13 resultados para landfill gas emission measurements

em Scielo Saúde Pública - SP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isoprene emission from plants accounts for about one third of annual global volatile organic compound emissions. The largest source of isoprene for the global atmosphere is the Amazon Basin. This study aimed to identify and quantify the isoprene emission and photosynthesis at different levels of light intensity and leaf temperature, in three phenological phases (young mature leaf, old mature leaf and senescent leaf) of Eschweilera coriacea (Matamatá verdadeira), the species with the widest distribution in the central Amazon. In situ photosynthesis and isoprene emission measurements showed that young mature leaf had the highest rates at all light intensities and leaf temperatures. Additionally, it was observed that isoprene emission capacity (Es) changed considerably over different leaf ages. This suggests that aging leads to a reduction of both leaf photosynthetic activity and isoprene production and emission. The algorithm of Guenther et al. (1999) provided good fits to the data when incident light was varied, however differences among E S of all leaf ages influenced on quantic yield predicted by model. When leaf temperature was varied, algorithm prediction was not satisfactory for temperature higher than ~40 °C; this could be because our data did not show isoprene temperature optimum up to 45 °C. Our results are consistent with the hypothesis of the isoprene functional role in protecting plants from high temperatures and highlight the need to include leaf phenology effects in isoprene emission models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The experiment was carried out at the Embrapa Semi-Árido, Petrolina-PE, Brazil, in order to study the physiological responses of umbu plants propagated by seeds and by stem cuttings under water stress conditions, based on leaf water potential and gas exchange measurements. Data were collected in one-year plants established in pots containing 30 kg of a sandy soil and submitted to twenty-day progressive soil water deficit. The evaluations were based on leaf water potential and gas exchange data collection using psychrometric chambers and a portable infra-red gas analyzer, respectively. Plants propagated by seeds maintained a significantly higher water potential, stomatal conductance, transpiration and photosynthesis under decreasing soil water availability. However, plants propagated by stem cuttings were unable to maintain a favorable internal water balance, reflecting negatively on stomatal conductance and leaf gas exchange. This fact is probably because umbu plants propagated by stem cuttings are not prone to formation of root tubers which are reservoirs for water and solutes. Thus, the establishing of umbu plants propagated by stem cuttings must be avoided in areas subjected to soil water deficit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic residue application into soil alter the emission of gases to atmosphere and CO2, CH4, N2O may contribute to increase the greenhouse effect. This experiment was carried out in a restoration area on a dystrophic Ultisol (PVAd) to quantify greenhouse gas (GHG) emissions from soil under castor bean cultivation, treated with sewage sludge (SS) or mineral fertilizer. The following treatments were tested: control without N; FertMin = mineral fertilizer; SS5 = 5 t ha-1 SS (37.5 kg ha-1 N); SS10 = 10 t ha-1 SS (75 kg ha-1 N); and SS20 = 20 t ha-1 SS (150 kg ha-1 N). The amount of sludge was based on the recommended rate of N for castor bean (75 kg ha-1), the N level of SS and the mineralization fraction of N from SS. Soil gas emission was measured for 21 days. Sewage sludge and mineral fertilizers altered the CO2, CH4 and N2O fluxes. Soil moisture had no effect on GHG emissions and the gas fluxes was statistically equivalent after the application of FertMin and of 5 t ha-1 SS. The application of the entire crop N requirement in the form of SS practically doubled the Global Warming Potential (GWP) and the C equivalent emissions in comparison with FertMin treatments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Landfill gas emissions are one of the main sources of anthropogenic methane (CH4), a major greenhouse gas. In this paper, an economically attractive alternative to minimize greenhouse gas emissions from municipal solid waste landfills was sought. This alternative consists in special biofilters as landfill covers with oxidative capacity in the presence of CH4. To improve the quality/cost ratio of the project, compost was chosen as one of the cover substrates and soil (Typic red yellow-silt-clay Podzolic) as the other. The performance of four substrates was studied in laboratory experiments: municipal solid waste (MSW) compost, soil, and two soil-compost at different proportions. This study aimed to evaluate the suitability and environmental compatibility as a means of CH4 oxidation in biofilters. Four biofilters were constructed in 60 cm PVC tubes with an internal diameter of 10 cm. Each filter contained 2.3 L of oxidizing substrate at the beginning of the experiment. The gas used was a mixture of CH4 and air introduced at the bottom of each biofilter, at a flow of 150 mL min-1, by a flow meter. One hundred days after the beginning of the experiment, the best biofilter was the MSW compost with an oxidation rate of 990 g m-3 day-1 , corresponding to an efficiency of 44 %. It can be concluded that the four substrates studied have satisfactory oxidative capacity, and the substrates can be used advantageously as cover substrate of MSW landfills.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is here discussed the development of a low cost analytical instrument with capacity for metals determination using atomic emission measurements in an electrothermal atomization system with a tungsten coil atomizer. The main goal was to show a new frontier for using this atomizer and to demonstrate that the simple instrumental arrangement here proposed has potential for portability and for solving analytical tasks related to metals determination. Atomic emission of calcium was selected for the adjustment of instrumental parameters and to evaluate the main characteristics of the lab-built instrument. Cobalt was determined in medicines and one alloy to demonstrate its feasibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this research was to study the influence of factors related to the proper management of pig manure (lower dilution) and the season of the year in the progress of the co-composting of pig manure with wood shavings and in the final quality of the compost resulting from the treatments. In the first experiment, two types of swine manure were used: a diluted one (2% Dry Matter - DM), typical from the management usually used in Brazil, and a more concentrated one (6% DM). The manures were incorporated into the wood shavings (6L:1kg) over the course of four weeks. The development of composting was accompanied by monitoring of temperatures inside the piles and the emission of CO2 and CH4 gases during 65 days, including the period of incorporation. The results showed that the diluted manure does not provide the minimum conditions for starting the process. After the incorporation period, any biomass heating was observed and neither the aerobic or anaerobic respiration of the microorganisms, resulting in a compost with low quality. In the second experiment, which evaluated composting in winter and summer during 85 days, it was found that the heat exchange with the environment influences the temperature generated within the piles. The lower temperatures significantly reduced the methanogenesis on the biomass.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The semi-arid region of Chiapas is dominated by N2 -fixing shrubs, e.g., Acacia angustissima. Urea-fertilized soil samples under maize were collected from areas covered and uncovered by A. angustissima in different seasons and N2O and CO2 emissions were monitored. The objective of this study was to determine the effects of urea and of the rainy and dry season on gas emissions from semi-arid soil under laboratory conditions. Urea and soil use had no effect on CO2 production. Nitrons oxide emission from soil was three times higher in the dry than in the rainy season, while urea fertilization doubled emissions. Emissions were twice as high from soil sampled under A. angustissima canopy than from arable land, but 1.2 lower than from soil sampled outside the canopy, and five times higher from soil incubated at 40 % of the water-holding capacity (WHC) than at soil moisture content, but 15 times lower than from soil incubated at 100 WHC. It was found that the soil sampling time and water content had a significant effect on N2O emissions, while N fertilizer and sampling location were less influent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To evaluate the level of ambient radiation in a PET/CT center. Materials and Methods: Previously selected and calibrated TLD-100H thermoluminescent dosimeters were utilized to measure room radiation levels. During 32 days, the detectors were placed in several strategically selected points inside the PET/CT center and in adjacent buildings. After the exposure period the dosimeters were collected and processed to determine the radiation level. Results: In none of the points selected for measurements the values exceeded the radiation dose threshold for controlled area (5 mSv/year) or free area (0.5 mSv/year) as recommended by the Brazilian regulations. Conclusion: In the present study the authors demonstrated that the whole shielding system is appropriate and, consequently, the workers are exposed to doses below the threshold established by Brazilian standards, provided the radiation protection standards are followed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ammonia is the most common alkaline gas of the atmosphere, being important in the neutralization of various processes that occur in the atmosphere. Its main sources of emission are the decomposition of organic matter and dejections of animals. Ammonia is used by man in diverse activities of production, therefore it is a gas that can contaminate work environments. Measurements of ammonia concentration in some parts of the world have shown great spatial and weather variation. This large variability makes it difficult to estimate the input of reduced nitrogen to different ecosystems from measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrogen content in natural gas was studied in experimental and computational investigations to identify its influence on the emission level of exhaust gases from combustion facilities. Changes in natural gas composition with different N2 concentrations may result from introducing a new source gas into the system. An industrial burner fired at 75 kW, housed in a laboratory-scale furnace, was employed for runs where the natural gas/N2 proportion was varied. The exhaust and in-furnace measurements of temperature and gas concentrations were performed for different combustion scenarios, varying N2 content from 1-10 %v. Results have shown that the contamination of natural gas with nitrogen reduced the peak flame temperature, the concentration of unstable species, the NO X emission level and the heat transfer rate to the furnace walls, resulting from the recombination reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present paper is to study the relationship between the fracture modes in hydrogen-assisted cracking (HAC) in microalloied steel and the emission of acoustic signals during the fracturing process. For this reason, a flux-cored arc weld (FCAW) was used in a high-strength low-alloy steel. The consumable used were the commercially available AWS E120T5-K4 and had a diameter of 1.6 mm. Two different shielding gases were used (CO2 and CO2+5% H2) to obtain complete phenomenon characterization. The implant test was applied with three levels of restriction stresses. An acoustic emission measurement system (AEMS) was coupled to the implant test apparatus. The output signal from the acoustic emission sensor was passed through an electronic amplifier and processed by a root mean square (RMS) voltage converter. Fracture surfaces were examined by scanning electron microscopy (SEM) and image analysis. Fracture modes were related with the intensity, the energy and the number of the peaks of the acoustic emission signal. The shielding gas CO2+5% H2 proved to be very useful in the experiments. Basically, three different fracture modes were identified in terms of fracture appearance: microvoid coalescence (MVC), intergranular (IG) and quasi-cleavage (QC). The results show that each mode of fracture presents a characteristic acoustic signal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Venturi scrubbers are high efficiency gas cleaners in which suspended particles are removed from gas streams by droplets formed by liquid atomisation, usually in the venturi throat. The size of the droplets formed is of fundamental importance to the performance of the equipment, both in terms of pressure drop and collection efficiency. In this study, drop sizes in a cylindrical laboratory scale venturi scrubber were measured using a laser diffraction technique. Gas velocity and liquid to gas ratios varied from 50 to 90 m/s and 0.5 to 2.0 l/m3, respectively. Water was inserted as perpendicular jets at the beginning of the throat. Measurements were performed at three positions: two located along the throat, and the last one at the end of the diffuser. The data presented here are a typical example of pneumatic atomisation and can be relevant to other industrial applications such as combustion and engine technology. Finally, results are compared to available correlations and the validity of these equations is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyzed the effects of saline infusion for the maintenance of blood volume on pulmonary gas exchange in ischemia-reperfusion syndrome during temporary abdominal aortic occlusion in dogs. We studied 20 adult mongrel dogs weighing 12 to 23 kg divided into two groups: ischemia-reperfusion group (IRG, N = 10) and IRG submitted to saline infusion for the maintenance of mean pulmonary arterial wedge pressure between 10 and 20 mmHg (IRG-SS, N = 10). All animals were anesthetized and maintained on spontaneous ventilation. After obtaining baseline measurements, occlusion of the supraceliac aorta was performed by the inflation of a Fogarty catheter. After 60 min of ischemia, the balloon was deflated and the animals were observed for another 60 min of reperfusion. The measurements were made at 10 and 45 min of ischemia, and 5, 30, and 60 min of reperfusion. Pulmonary gas exchange was impaired in the IRG-SS group as demonstrated by the increase of the alveolar-arterial oxygen difference (21 ± 14 in IRG-SS vs 11 ± 8 in IRG after 60 min of reperfusion, P = 0.004 in IRG-SS in relation to baseline values) and the decrease of oxygen partial pressure in arterial blood (58 ± 15 in IRG-SS vs 76 ± 15 in IRG after 60 min of reperfusion, P = 0.001 in IRG-SS in relation to baseline values), which was correlated with the highest degree of pulmonary edema in morphometric analysis (0.16 ± 0.06 in IRG-SS vs 0.09 ± 0.04 in IRG, P = 0.03 between groups). There was also a smaller ventilatory compensation of metabolic acidosis after the reperfusion. We conclude that infusion of normal saline worsened the gas exchange induced by pulmonary reperfusion injury in this experimental model.