23 resultados para lactate imaging, human tumor xenografts, head
em Scielo Saúde Pública - SP
Resumo:
A series of 15 ω-aminoalkoxylxanthones containing methyl, ethyl, propyl, tert-butylamino and piperidinyl moieties were synthesized from a natural xanthone isolated from a lichen species. These compounds were tested for their in vitro antibacterial properties against Gram-positive and Gram-negative bacteria and cytotoxicity against a number of human tumor cell lines was too evaluated. The newly synthesized derivatives revealed selective activity against Staphylococcus aureus (Gram-positive), and the most promising results are for a multidrug resistant strain, for which six of these compounds showed good activity (MICs 4 µg/mL). Many derivatives inhibited tumor cells growth and most compounds were active on multiple lines.
Resumo:
Loss of Y-chromosome has been correlated with older age in males. Furthermore, current evidence indicates that Y-chromosome loss also occurs in several human tumors, including head and neck carcinomas. However, the association between Y nullisomy and the occurrence of neoplasias in elderly men has not been well established. In the present study, the association between Y-chromosome loss and head and neck carcinomas was evaluated by comparison to cells from peripheral blood lymphocytes and normal mucosa of cancer-free individuals matched for age using dual-color fluorescence in situ hybridization. Twenty-one patients ranging in age from 28 to 68 years were divided into five-year groups for comparison with 16 cancer-free individuals matched for age. The medical records of all patients were examined to obtain clinical and histopathological data. None of the patients had undergone radiotherapy or chemotherapy before surgery. In all groups, the frequency of Y-chromosome loss was higher among patients than among normal reference subjects (P < 0.0001) and was not age-dependent. These data suggest that Y-chromosome loss is a tumor-specific alteration not associated with advanced age in head and neck carcinomas.
Resumo:
In this paper a number of anticancer agents of natural origin will be presented. Hydroxycamtothecin (HCPT) was found to produce a strong inhibitory action on a variety of animal tumors. It is also effective for treatment of patients with gastric carcinoma, liver carcinoma, tumor of head and neck or leukemia. Pharmacologic studies showed that it could depress S phase of tumor cells significantly and cause formation of cellular chromatid breaks. By means of alkaline elution and nick translation methods it has been proved that HCPT induced DNA singlo strand breaks remarkably. Homoharringyonine (hhrt) was shown to be effective against acute leukemia. Recent experiments in tumor-bearing mice inidcated that (HHRT) could diminish tumor metastasis. Using molecular hybridization technique it was demonstrated that (HHRT) decreased the content of c-myc RNA in the cytoplasm but not in the nuclei. Lycobetaine (LBT) poddrddrf dytnh inhibitory effects on a number of ascites tumors. In clinical trials it was against ovarian and gastric carcinomas. It is able to intercalate into DNA. Oxalysine (OXL) is a new antibiotic and shown to be effective against tumor metastatis. When used in combination with 5-FU, its anticancer action could be enhanced. Other natural compounds such as indirubin, ß-elemene, irisquinone, oridonine, norcantharidin and PSP have been also found to possess antitumor action.
Resumo:
The chemical study of the orchid Maxillaria picta resulted in the isolation of the bioactive stilbenes phoyunbene B and phoyunbene C, in addition to four phenolic acids, one xanthone, steroidal compounds and two triterpenes. Crude extract, fractions, subfractions and the isolated xanthone were evaluated for anticancer activity against human tumor cell lines and against evolutionary forms of T. cruzi and L. amazonensis. The structures of the compounds were determined by GC-MS, and ¹H NMR, 13C NMR spectral methods as well as bidimensional techniques.
Resumo:
We have developed a procedure for nonradioactive single strand conformation polymorphism analysis and applied it to the detection of point mutations in the human tumor suppressor gene p53. The protocol does not require any particular facilities or equipment, such as radioactive handling, large gel units for sequencing, or a semiautomated electrophoresis system. This technique consists of amplification of DNA fragments by PCR with specific oligonucleotide primers, denaturation, and electrophoresis on small neutral polyacrylamide gels, followed by silver staining. The sensitivity of this procedure is comparable to other described techniques and the method is easy to perform and applicable to a variety of tissue specimens.
Resumo:
Natural products produced by microorganisms have been an important source of new substances and lead compounds for the pharmaceutical industry. Chromobacterium violaceum is a Gram-negative β-proteobacterium, abundant in water and soil in tropical and subtropical regions and it produces violacein, a pigment that has shown great pharmaceutical potential. Crude extracts of five Brazilian isolates of Chromobacterium sp (0.25, 2.5, 25, and 250 µg/mL) were evaluated in an in vitro antitumor activity assay with nine human tumor cells. Secondary metabolic profiles were analyzed by liquid chromatography and electrospray ionization mass spectrometry resulting in the identification of violacein in all extracts, whereas FK228 was detected only in EtCE 308 and EtCE 592 extracts. AcCE and EtCE 310 extracts showed selectivity for NCI/ADR-RES cells in the in vitro assay and were evaluated in vivo in the solid Ehrlich tumor model, resulting in 50.3 and 54.6% growth inhibition, respectively. The crude extracts of Chromobacterium sp isolates showed potential and selective antitumor activities for certain human tumor cells, making them a potential source of lead compounds. Furthermore, the results suggest that other compounds, in addition to violacein, deoxyviolacein and FK228, may be involved in the antitumor effect observed.
Resumo:
DNA hypomethylation may activate oncogene transcription, thus promoting carcinogenesis and tumor development. S-adenosylmethionine (SAM) is a methyl donor in numerous methylation reactions and acts as an inhibitor of intracellular demethylase activity, which results in hypermethylation of DNA. The main objectives of this study were to determine whether DNA hypomethylation correlated with vascular endothelial growth factor-C (VEGF-C) expression, and the effect of SAM on VEGF-C methylation and gastric cancer growth inhibition. VEGF-C expression was assayed by Western blotting and RT-qPCR in gastric cancer cells, and by immunohistochemistry in tumor xenografts. VEGF-C methylation was assayed by bisulfite DNA sequencing. The effect of SAM on cell apoptosis was assayed by flow cytometry analyses and its effect on cancer growth was assessed in nude mice. The VEGF-C promoters of MGC-803, BGC-823, and SGC-7901 gastric cancer cells, which normally express VEGF-C, were nearly unmethylated. After SAM treatment, the VEGF-C promoters in these cells were highly methylated and VEGF-C expression was downregulated. SAM also significantly inhibited tumor growthin vitro and in vivo. DNA methylation regulates expression of VEGF-C. SAM can effectively induce VEGF-C methylation, reduce the expression of VEGF-C, and inhibit tumor growth. SAM has potential as a drug therapy to silence oncogenes and block the progression of gastric cancer.
Resumo:
Introduction The progression of human papillomavirus (HPV) infection in the anogenital tract has been associated with the involvement of cells with regulatory properties. Evidence has shown that glucocorticoid-induced tumor necrosis factor receptor (GITR) is an important surface molecule for the characterization of these cells and proposes that GITR ligand may constitute a rational treatment for many cancer types. We aimed to detect the presence of GITR and CD25 in cervical stroma cells with and without pathological changes or HPV infection to better understand the immune response in the infected tissue microenvironment. Methods We subjected 49 paraffin-embedded cervical tissue samples to HPV DNA detection and histopathological analysis, and subsequently immunohistochemistry to detect GITR and CD25 in lymphocytes. Results We observed that 76.9% of all samples with high GITR expression were HPV-positive regardless of histopathological findings. High GITR expression (77.8%) was predominant in samples with ≥1,000 RLU/PCB. Of the HPV-positive samples negative for intraepithelial lesion and malignancy, 62.5% had high GITR expression. High GITR expression was observed in both carcinoma and high-grade squamous intraepithelial lesion (HSIL) samples (p = 0.16). CD25 was present in great quantities in all samples. Conclusions The predominance of high GITR expression in samples with high viral load that were classified as HSIL and carcinoma suggests that GITR+ cells can exhibit regulatory properties and may contribute to the progression of HPV-induced cervical neoplasia, emphasizing the importance of GITR as a potential target for immune therapy of cervical cancer and as a disease evolution biomarker.
Resumo:
Tumor necrosis factor-alpha (TNF-α) is a cytokine produced by activated macrophages and other cells. In order to verify whether the serum levels of TNF-α in American tegumentary leishmaniasis patients are associated with the process of cure or aggravation of the disease, 41 patients were studied: 26 cases of cutaneous leishmaniasis (CL) and 15 of mucocutaneous leishmaniasis (MCL). During active disease the serum levels of TNF-α of MCL patients were significantly higher than those of CL patients and control subjects (healthy individuals and cutaneous lesions from other etiologies). The MCL patients had serum titers of TNF-α significantly lower at the end of antimonial therapy than before therapy. After a six-month follow-up, the MCL patients had serum levels of TNF-α similar to those observed at the end of the therapy as well as to those of CL patients and control subjects. No significant variation in the serum levels of TNF-α was observed in CL patients throughout the study period (before, at the end of therapy and after a six-month follow-up). The possible relationship between the high TNF-α serum levels and severity of the disease is discussed.
Resumo:
Gastric cancer is the second most frequent type of neoplasia and also the second most important cause of death in the world. Virtually all the established cell lines of gastric neoplasia were developed in Asian countries, and western countries have contributed very little to this area. In the present study we describe the establishment of the cell line ACP01 and characterize it cytogenetically by means of in vitro immortalization. Cells were transformed from an intestinal-type gastric adenocarcinoma (T4N2M0) originating from a 48-year-old male patient. This is the first gastric adenocarcinoma cell line established in Brazil. The most powerful application of the cell line ACP01 is in the assessment of cytotoxicity. Solid tumor cell lines from different origins have been treated with several conventional and investigational anticancer drugs. The ACP01 cell line is triploid, grows as a single, non-organized layer, similar to fibroblasts, with focus formation, heterogeneous division, and a cell cycle of approximately 40 h. Chromosome 8 trisomy, present in 60% of the cells, was the most frequent cytogenetic alteration. These data lead us to propose a multifactorial triggering of gastric cancer which evolves over multiple stages involving progressive genetic changes and clonal expansion.
Resumo:
The aim of the present study was to evaluate the role of magnetic resonance imaging (MRI) for the non-invasive detection of coronary abnormalities and specifically the remodeling process in patients with coronary artery disease (CAD). MRI was performed in 10 control healthy subjects and 26 patients with angiographically proven CAD of the right coronary (RCA) or left anterior descending (LAD) artery; 23 patients were within two months of acute coronary syndromes, and 3 had stable angina with a positive test for ischemia. Wall thickness (WT), vessel wall area (VWA), total vessel area (TVA), and luminal area (LA) were measured. There were significant increases in WT (mean ± SEM, RCA: 2.62 ± 0.75 vs 0.53 ± 0.15 mm; LAD: 2.21 ± 0.69 vs 0.62 ± 0.24 mm) and in VWA (RCA: 30.96 ± 17.57 vs 2.1 ± 1.2 mm²; LAD: 19.53 ± 7.25 vs 3.6 ± 2.0 mm²) patients compared to controls (P < 0.001 for each variable). TVA values were also greater in patients compared to controls (RCA: 44.56 ± 21.87 vs 12.3 ± 4.2 mm²; LAD: 31.89 ± 11.31 vs 17.0 ± 6.2 mm²; P < 0.001). In contrast, the LA did not differ between patients and controls for RCA or LAD. When the LA was adjusted for vessel size using the LA/TVA ratio, a significant difference was found: 0.33 ± 0.16 in patients vs 0.82 ± 0.09 in controls (RCA) and 0.38 ± 0.13 vs 0.78 ± 0.06 (LAD) (P < 0.001). As opposed to normal controls, positive remodeling was present in all patients with CAD, as indicated by larger VWA. We conclude that MRI detected vessel wall abnormalities and was an effective tool for the noninvasive evaluation of the atherosclerotic process and coronary vessel wall modifications, including positive remodeling that frequently occurs in patients with acute coronary syndromes.
Resumo:
In vivo proton magnetic resonance spectroscopy (¹H-MRS) is a technique capable of assessing biochemical content and pathways in normal and pathological tissue. In the brain, ¹H-MRS complements the information given by magnetic resonance images. The main goal of the present study was to assess the accuracy of ¹H-MRS for the classification of brain tumors in a pilot study comparing results obtained by manual and semi-automatic quantification of metabolites. In vivo single-voxel ¹H-MRS was performed in 24 control subjects and 26 patients with brain neoplasms that included meningiomas, high-grade neuroglial tumors and pilocytic astrocytomas. Seven metabolite groups (lactate, lipids, N-acetyl-aspartate, glutamate and glutamine group, total creatine, total choline, myo-inositol) were evaluated in all spectra by two methods: a manual one consisting of integration of manually defined peak areas, and the advanced method for accurate, robust and efficient spectral fitting (AMARES), a semi-automatic quantification method implemented in the jMRUI software. Statistical methods included discriminant analysis and the leave-one-out cross-validation method. Both manual and semi-automatic analyses detected differences in metabolite content between tumor groups and controls (P < 0.005). The classification accuracy obtained with the manual method was 75% for high-grade neuroglial tumors, 55% for meningiomas and 56% for pilocytic astrocytomas, while for the semi-automatic method it was 78, 70, and 98%, respectively. Both methods classified all control subjects correctly. The study demonstrated that ¹H-MRS accurately differentiated normal from tumoral brain tissue and confirmed the superiority of the semi-automatic quantification method.
Resumo:
Anti-cancer DNA vaccines have attracted growing interest as a simple and non-invasive method for both the treatment and prevention of tumors induced by human papillomaviruses. Nonetheless, the low immunogenicity of parenterally administered vaccines, particularly regarding the activation of cytotoxic CD8+ T cell responses, suggests that further improvements in both vaccine composition and administration routes are still required. In the present study, we report the immune responses and anti-tumor effects of a DNA vaccine (pgD-E7E6E5) expressing three proteins (E7, E6, and E5) of the human papillomavirus type 16 genetically fused to the glycoprotein D of the human herpes simplex virus type 1, which was administered to mice by the intradermal (id) route using a gene gun. A single id dose of pgD-E7E6E5 (2 µg/dose) induced a strong activation of E7-specific interferon-γ (INF-γ)-producing CD8+ T cells and full prophylactic anti-tumor effects in the vaccinated mice. Three vaccine doses inhibited tumor growth in 70% of the mice with established tumors. In addition, a single vaccine dose consisting of the co-administration of pgD-E7E6E5 and the vector encoding interleukin-12 or granulocyte-macrophage colony-stimulating factor further enhanced the therapeutic anti-tumor effects and conferred protection to 60 and 50% of the vaccinated mice, respectively. In conclusion, id administration of pgD-E7E6E5 significantly enhanced the immunogenicity and anti-tumor effects of the DNA vaccine, representing a promising administration route for future clinical trials.
Resumo:
Pituitary tumor-transforming gene-1 (PTTG1) is a proto-oncogene that promotes tumorigenesis and metastasis in numerous cell types and is overexpressed in a variety of human tumors. We have demonstrated that PTTG1 expression was up-regulated in both human prostate cancer specimens and prostate cancer cell lines. For a more direct assessment of the function of PTTG1 in prostate tumorigenesis, RNAi-mediated knockdown was used to selectively decrease PTTG1 expression in PC3 human prostate tumor cells. After three weeks of selection, colonies stably transfected with PTTG1-targeted RNAi (the knockdown PC3 cell line) or empty vector (the control PC3 cell line) were selected and expanded to investigate the role of PTTG1 expression in PC3 cell growth and invasion. Cell proliferation rate was significantly slower (28%) in the PTTG1 knockdown line after 6 days of growth as indicated by an MTT cell viability assay (P < 0.05). Similarly, a soft agar colony formation assay revealed significantly fewer (66.7%) PTTG1 knockdown PC3 cell colonies than control colonies after three weeks of growth. In addition, PTTG1 knockdown resulted in cell cycle arrest at G1 as indicated by fluorescence-activated cell sorting. The PTTG1 knockdown PC3 cell line also exhibited significantly reduced migration through Matrigel in a transwell assay of invasive potential, and down-regulation of PTTG1 could lead to increased sensitivity of these prostate cancer cells to a commonly used anticancer drug, taxol. Thus, PTTG1 expression is crucial for PC3 cell proliferation and invasion, and could be a promising new target for prostate cancer therapy.
Resumo:
The absolute numbers of total leukocytes, lymphocytes, T cells, helper/inducer, suppressor/cytotoxic and B cells were decreased in the peripheral blood of patients with chronic Chagas' disease. Since antilymphocyte antibodies were present only in a minority of patients they probably cannot account for the abnormalities in lymphocyte subsets. Patient neutrophils stimulated with endotoxin-treated autologous plasma showed depressed chemotactic activity and this seems to be an intrinsic cellular defect rather than plasma inhibition. Random migration of neutrophils was normal. Reduction of nitroblue tetrazolium by endotoxin- stimulated neutrophils was also decreased. These findings further document the presence of immunosuppression in human Chagas' disease. They may be relevant to autoimmunity, defense against microorganisms and against tumor cells at least in a subset of patients with more severe abnormalities.