10 resultados para key factors
em Scielo Saúde Pública - SP
Resumo:
Many studies have been conducted in corporate finance regarding long-term investment and financing decisions. However, short-term asset investments play a significant role in the balance sheet of companies. Moreover, financial managers dedicate significant amounts of time and effort to the subject of working capital management, balancing current assets and liabilities. This paper provides insights regarding the key factors of working capital management by exploring the internal variables of a number of companies. This study used data from 2,976 Brazilian public companies from 2001 to 2008, and found that debt level, size and growth rate can affect the working capital management of companies.
Resumo:
Studies addressing the biological control of Botrytis cinerea have been unsuccessful because of fails in inoculating tomato plants with the pathogen. With the aim of establishing a methodology for inoculation into stems, experiments were designed to assess: i. the aggressiveness of pathogen isolates; ii. the age at which tomato plants should be inoculated; iii. the susceptibility of tissues at different stem heights; iv. the need for a moist chamber after inoculation; and v. the effectiveness of gelatin regarding inoculum adhesion. Infection with an isolate from tomato plants that was previously inoculated into petioles and then re-isolated was successful. An isolate from strawberry plants was also aggressive, although less than that from tomato plants. Tomato plants close to flowering, at 65 days after sowing, and younger, middle and apical stem portions were more susceptible. There was positive correlation between lesion length and sporulation and between lesion length and broken stems. Lesion length and the percentage of sporulation sites were reduced by using a moist chamber and were not affected by adding gelatin to the inoculum suspension. This methodology has been adopted in studies of B. cinerea in tomato plants showing reproducible results. The obtained results may assist researchers who study the gray mold.
Resumo:
Angiostrongylus costaricensis is a nematode that causes abdominal angiostrongyliasis, a widespread human parasitism in Latin America. This study aimed to characterize the protease profiles of different developmental stages of this helminth. First-stage larvae (L1) were obtained from the faeces of infected Sigmodon hispidus rodents and third-stage larvae (L3) were collected from mollusks Biomphalaria glabrata previously infected with L1. Adult worms were recovered from rodent mesenteric arteries. Protein extraction was performed after repeated freeze-thaw cycles followed by maceration of the nematodes in 40 mM Tris base. Proteolysis of gelatin was observed by zymography and found only in the larval stages. In L3, the gelatinolytic activity was effectively inhibited by orthophenanthroline, indicating the involvement of metalloproteases. The mechanistic class of the gelatinases from L1 could not be precisely determined using traditional class-specific inhibitors. Adult worm extracts were able to hydrolyze haemoglobin in solution, although no activity was observed by zymography. This haemoglobinolytic activity was ascribed to aspartic proteases following its effective inhibition by pepstatin, which also inhibited the haemoglobinolytic activity of L1 and L3 extracts. The characterization of protease expression throughout the A. costaricensis life cycle may reveal key factors influencing the process of parasitic infection and thus foster our understanding of the disease pathogenesis.
Resumo:
Aspects of population dynamics and life history of Paepalanthus polyanthus (Bong.) Kunth, a sand dune monocarpic plant, were evaluated. A five year study was carried out on three permanent plots (5 m x 5 m) in a sand dune slack at Joaquina beach, Santa Catarina State, Brazil. From December 1986 to June 1989, the population decreased due to the death of the post reproductive plants and a low emergence of seedlings. In June 1989, a great recruitment occurred, but no plants survived. The population re-established itself by 1990-1991. The emergence and high survival of seedlings depended on periods of high pluviosity. Nevertheless, the summer flooding and episodes of drought represented key factors in mortality. The birth and mortality rates varied among the areas. It is suggested that these differences are related with depth of the ground water and with vegetation cover at each site. Paepalanthus polyanthus can reproduce in the second year of life, but few plants do this. The chances of survival and reproduction increase with the size of the basal leaf rosette. Although the production of seeds increases with size, the risk of unexpected flooding, for instance, suggest that a great delay in reproduction might not be the most favorable strategy.
Resumo:
Centromere function requires the proper coordination of several subfunctions, such as kinetochore assembly, sister chromatid cohesion, binding of kinetochore microtubules, orientation of sister kinetochores to opposite spindle poles, and their movement towards the spindle poles. Centromere structure appears to be organized in different, separable domains in order to accomplish these functions. Despite the conserved nature of centromere functions, the molecular genetic definition of the DNA sequences that form a centromere in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, in the fruit fly Drosophila melanogaster, and in humans has revealed little conservation at the level of centromere DNA sequences. Also at the protein level few centromere proteins are conserved in all of these four organisms and many are unique to the different organisms. The recent analysis of the centromere structure in the yeast S. pombe by electron microscopy and detailed immunofluorescence microscopy of Drosophila centromeres have brought to light striking similarities at the overall structural level between these centromeres and the human centromere. The structural organization of the centromere is generally multilayered with a heterochromatin domain and a central core/inner plate region, which harbors the outer plate structures of the kinetochore. It is becoming increasingly clear that the key factors for assembly and function of the centromere structure are the specialized histones and modified histones which are present in the centromeric heterochromatin and in the chromatin of the central core. Thus, despite the differences in the DNA sequences and the proteins that define a centromere, there is an overall structural similarity between centromeres in evolutionarily diverse eukaryotes.
Resumo:
The high morbidity, high socioeconomic costs and lack of specific treatments are key factors that define the relevance of brain pathology for human health and the importance of research on neuronal protective agents. Epidemiological studies have shown beneficial effects of flavonoids on arteriosclerosis-related pathology in general and neurodegeneration in particular. Flavonoids can protect the brain by their ability to modulate intracellular signals promoting cellular survival. Quercetin and structurally related flavonoids (myricetin, fisetin, luteolin) showed a marked cytoprotective capacity in in vitro experimental conditions in models of predominantly apoptotic death such as that induced by medium concentrations (200 µM) of H2O2 added to PC12 cells in culture. Nevertheless, quercetin did not protect substantia nigra neurons in vivo from an oxidative insult (6-hydroxydopamine), probably due to difficulties in crossing the blood-brain barrier. On the other hand, treatment of permanent focal ischemia with a lecithin/quercetin preparation decreased lesion volume, showing that preparations that help to cross the blood-brain barrier may be critical for the expression of the effects of flavonoids on the brain. The hypothesis is advanced that a group of quercetin-related flavonoids could become lead molecules for the development of neuroprotective compounds with multitarget anti-ischemic effects.
Resumo:
Mitochondrial ion transport, oxidative phosphorylation, redox balance, and physical integrity are key factors in tissue survival following potentially damaging conditions such as ischemia/reperfusion. Recent research has demonstrated that pharmacologically activated inner mitochondrial membrane ATP-sensitive K+ channels (mitoK ATP) are strongly cardioprotective under these conditions. Furthermore, mitoK ATP are physiologically activated during ischemic preconditioning, a procedure which protects against ischemic damage. In this review, we discuss mechanisms by which mitoK ATP may be activated during preconditioning and the mitochondrial and cellular consequences of this activation, focusing on end-effects which may promote ischemic protection. These effects include decreased loss of tissue ATP through reverse activity of ATP synthase due to increased mitochondrial matrix volumes and lower transport of adenine nucleotides into the matrix. MitoK ATP also decreases the release of mitochondrial reactive oxygen species by promoting mild uncoupling in concert with K+/H+ exchange. Finally, mitoK ATP activity may inhibit mitochondrial Ca2+ uptake during ischemia, which, together with decreased reactive oxygen release, can prevent mitochondrial permeability transition, loss of organelle function, and loss of physical integrity. We discuss how mitochondrial redox status, K+ transport, Ca2+ transport, and permeability transitions are interrelated during ischemia/reperfusion and are determinant factors regarding the extent of tissue damage.
Resumo:
Germ cell tumors present contrasting biological and molecular features compared to many solid tumors, which may partially explain their unusual sensitivity to chemotherapy. Reduced DNA repair capacity and enhanced induction of apoptosis appear to be key factors in the sensitivity of germ cell tumors to cisplatin. Despite substantial cure rates, some patients relapse and subsequently die of their disease. Intensive doses of chemotherapy are used to counter mechanisms of drug resistance. So far, high-dose chemotherapy with hematopoietic stem cell support for solid tumors is used only in the setting of testicular germ cell tumors. In that indication, high-dose chemotherapy is given as the first or late salvage treatment for patients with either relapsed or progressive tumors after initial conventional salvage chemotherapy. High-dose chemotherapy is usually given as two or three sequential cycles using carboplatin and etoposide with or without ifosfamide. The administration of intensive therapy carries significant side effects and can only be efficiently and safely conducted in specialized referral centers to assure optimum patient care outcomes. In breast and ovarian cancer, most studies have demonstrated improvement in progression-free survival (PFS), but overall survival remained unchanged. Therefore, most of these approaches have been dropped. In germ cell tumors, clinical trials are currently investigating novel therapeutic combinations and active treatments. In particular, the integration of targeted therapies constitutes an important area of research for patients with a poor prognosis.
Resumo:
The conversion of p-coumaric acid, ferulic acid, and caffeic acid into 4-ethylphenol, 4-ethylguaiacol and 4-ethylcatechol was studied in Dekkera bruxellensis ISA 1791 under defined conditions in a synthetic medium and in a red wine. Liquid chromatography (HPLC-DAD) was used to quantify the phenolic acids, and gas chromatography (GC) coupled to a FID detector was used to quantify volatile phenols using a novel analytical methodology that does not require sample derivatization. Identification was achieved by gas chromatography-mass detection (GC-MS). The results show that phenolic acids concentration decreases while volatile phenols concentration increases. The proportion of caffeic acid taken up by Dekkera bruxellensis is lower than that for p-coumaric or ferulic acid; therefore less 4-ethylcatechol is formed. More important, 4-ethylcathecol synthesis by Dekkera bruxellensis in wine has never been demonstrated so far. These results contribute decisively to a better understanding of the origin of the volatile phenols in wines. The accumulation of these compounds in wine is nowadays regarded as one of the key factors of quality control.
Resumo:
An important constituent group and a key resource of higher education institutions (HEIs) is the faculty or academic staff. The centrality of the faculty role makes it a primary sculptor of institutional culture and has implications for the quality of the institution and therefore has a major role in achieving the objectives of the institution. Demand for academic staff in higher education has been increasing and may be expected to continue to increase. Moreover the performance of academic staff as teachers and researchers determines much of the student satisfaction and has an impact on student learning. There are many factors that serve to undermine the commitment of academics to their institutions and careers. Job satisfaction is important in revitalizing staff motivation and in keeping their enthusiasm alive. Well motivated academic staff can, with appropriate support, build a national and international reputation for themselves and the institution in the professional areas, in research and in publishing. This paper aims to identify the issues and their impacts on academic staff job satisfaction and motivation within Portuguese higher education institutions reporting an ongoing study financed by the European Union through the Portuguese Foundation for Science and Technology.