168 resultados para interferon production
em Scielo Saúde Pública - SP
Resumo:
The production and regulation of interleukin (IL) IL-13, IL-4 and interferon-gamma was evaluated in different clinical forms of human schistosomiasis. The mechanisms of immune regulation are apparently different in the various clinical stages of the disease, some of them being antigen specific.
Resumo:
beta-glucan, one of the major cell wall components of Saccharomyces cerevisiae, has been found to enhance immune functions. This study investigated in vivo and in vitro effects of beta-glucan on lymphoproliferation and interferon-gamma (IFN-gamma) production by splenic cells from C57BL/6 female mice. All experiments were performed with particulate beta-glucan derived from S. cerevisiae. Data demonstrated that both, i.p administration of particulate beta-glucan (20 or 100 µg/animal) and in vitro stimulation of splenic cells (20 or 100 µg/ml of culture) decreased lymphoproliferation and IFN-gamma production induced by concanavalin A. These results suggest that beta-glucan can trigger a down-modulatory effect regulating a deleterious immune system hyperactivity in the presence of a strong stimulus.
Resumo:
The interferon (IFN)-γ response to peptides can be a useful diagnostic marker of Mycobacterium tuberculosis (MTB) latent infection. We identified promiscuous and potentially protective CD4+ T-cell epitopes from the most conserved regions of MTB antigenic proteins by scanning the MTB antigenic proteins GroEL2, phosphate-binding protein 1 precursor and 19 kDa antigen with the TEPITOPE algorithm. Seven peptide sequences predicted to bind to multiple human leukocyte antigen (HLA)-DR molecules were synthesised and tested with IFN-γ enzyme-linked immunospot (ELISPOT) assays using peripheral blood mononuclear cells (PBMCs) from 16 Mantoux tuberculin skin test (TST)-positive and 16 TST-negative healthy donors. Eighty-eight percent of TST-positive donors responded to at least one of the peptides, compared to 25% of TST-negative donors. Each individual peptide induced IFN-γ production by PBMCs from at least 31% of the TST-positive donors. The magnitude of the response against all peptides was 182 ± 230 x 106 IFN-γ spot forming cells (SFC) among TST-positive donors and 36 ± 62 x 106 SFC among TST-negative donors (p = 0.007). The response to GroEL2 (463-477) was only observed in the TST-positive group. This combination of novel MTB CD4 T-cell epitopes should be tested in a larger cohort of individuals with latent tuberculosis (TB) to evaluate its potential to diagnose latent TB and it may be included in ELISPOT-based IFN-γ assays to identify individuals with this condition.
Resumo:
The objective of the present study was to evaluate the production of cytokines, interferon-g (INF-g) and interleukin-10 (IL-10), in cultures of peripheral blood mononuclear cells (PBMC) from type 1 and type 2 diabetic patients and to correlate it with inadequate and adequate metabolic control. We studied 11 type 1 and 13 type 2 diabetic patients and 21 healthy individuals divided into two groups (N = 11 and 10) paired by sex and age with type 1 and type 2 diabetic patients. The PBMC cultures were stimulated with concanavalin-A to measure INF-g and IL-10 supernatant concentration by ELISA. For patients with inadequate metabolic control, the cultures were performed on the first day of hospitalization and again after intensive treatment to achieve adequate control. INF-g levels in the supernatants of type 1 diabetic patient cultures were higher compared to type 2 diabetic patients with adequate metabolic control (P < 0.001). Additionally, INF-g and IL-10 tended to increase the liberation of PBMC from type 1 and 2 diabetic patients with adequate metabolic control (P = 0.009 and 0.09, respectively). The increased levels of INF-g and IL-10 released from PBMC of type 1 and 2 diabetic patients with adequate metabolic control suggest that diabetic control improves the capacity of activation and maintenance of the immune response, reducing the susceptibility to infections.
Resumo:
Experimental murine L. major infection is characterized by the expansion of distinct CD4+ T cell subsets. The Th1 response is related to production of IFN-g and resolution of infection, whereas Th-2 response with production of IL-4 and IL-10 and dissemination of infection. The objective of this study was to measure the circulating levels of IFN-g, IL-10 and TNF-a in patients with visceral leishmaniasis (VL) before, during and at the end of therapy and to examine the association between cytokine levels and activity of VL. Fifteen patients with VL were evaluated. The cytokine determinations were done by using the enzyme-linked immunoassay (ELISA) before, during and at the end of therapy. At baseline, we detected circulating levels of IFN-g in 13 of 15 patients (median = 60 pg/ml); IL-10 in 14 of 15 patients (median = 141.4 pg/ml); and TNF-a in 13 of 14 patients (median = 38.9 pg/ml). As patients improved, following antimonial therapy, circulating levels of IL-10 showed an exponential decay (y = 82.34 e0,10367x, r = 0.659; p < 0.001). IFN-g was no longer detected after 7/14 days of therapy. On the other hand, circulating levels of TNF-a had a less pronounced decay with time on therapy, remaining detectable in most patients during the first seven days of therapy (y = 36.99-0.933x, r = 0.31; p = 0.05). Part of the expression of a successful response to therapy may, therefore, include reduction in secretion of inflammatory as well as suppressive cytokines. Since IL-10 and IFN-g are both detected prior to therapy, the recognized cellular immune depression seen in these patients may be due to biological predominance of IL-10 (type 2 cytokine), rather than lack of IFN-g (type 1 cytokine) production.
Resumo:
The Flaviviridae family, Flavivirus genus includes viruses that are transmitted to vertebrates by infected mosquitoes or ticks. The genus Flavivirus includes a variety of viruses that cause diseases such as acute febrile illness, encephalitis, and hemorrhagic fever. Flaviviruses primarily infect blood monocytes and tissue macrophages, which have been shown to be permissive, supporting viral replication and serving as virus reservoirs. On the other hand, these cells may have an important antiviral activity related to modulation by cytokine production and by the capacity of these cells to synthesize reactive free radicals such as nitric oxide (NO) which can have a microbicidal effect. The present study was performed in order to determine the production of cytokines interleukin-1beta (IL-1β), tumor necrosis factor -alpha (TNF-α), transforming growth factor- beta (TGF-β) and interferon -alpha (IFN-α) and NO by macrophages infected with one of four Brazilian flaviviruses, Bussuquara virus (BUSV), Yellow Fever virus (YFV), Rocio virus (ROCV) and Encephalitis Saint Louis virus (SLEV), and to verify the possible antiviral effect of NO during macrophage infection with ROCV. Moreover, we asked if the different viruses were able to regulate bacterial lipopolysaccharide (LPS) induced cytokine production. Our results showed that YFV and SLEV reduced the production of IL-1β and TGF-β by LPS-stimulated macrophages, while ROCV only diminished LPS-stimulated TGF-β synthesis. On the other hand, BUSV more likely favored an enhancement of the LPS-induced production of IL-1β by macrophages. Additionally, while most of the viruses stimulated the production of IFN-α, none of them altered the production of TNF-α by murine macrophages. Interestingly, all viruses induced synthesis of NO that was not correlated with antiviral activity for ROCV.
Resumo:
Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis whose interaction with the host may lead to a cell-mediated protective immune response. The presence of interferon-g (IFN-gamma) is related to this response. With the purpose of understanding the immunological mechanisms involved in this protection, the lymphoproliferative response, IFN-g and other cytokines like interleukin (IL-5, IL-10), and tumor necrosis factor alpha (TNF-a) were evaluated before and after the use of anti-TB drugs on 30 patients with active TB disease, 24 healthy household contacts of active TB patients, with positive purified protein derivative (PPD) skin tests (induration > 10 mm), and 34 asymptomatic individuals with negative PPD skin test results (induration < 5 mm). The positive lymphoproliferative response among peripheral blood mononuclear cells of patients showed high levels of IFN-g, TNF-a, and IL-10. No significant levels of IL-5 were detected. After treatment with rifampicina, isoniazida, and pirazinamida, only the levels of IFN-g increased significantly (p < 0.01). These results highlight the need for further evaluation of IFN-g production as a healing prognostic of patients treated.
Resumo:
Allergic diseases have been closely related to Th2 immune responses, which are characterized by high levels of interleukin (IL) IL-4, IL-5, IL-9 and IL-13. These cytokines orchestrate the recruitment and activation of different effector cells, such as eosinophils and mast cells. These cells along with Th2 cytokines are key players on the development of chronic allergic inflammatory disorders, usually characterized by airway hyperresponsiveness, reversible airway obstruction, and airway inflammation. Accumulating evidences have shown that altering cytokine-producing profile of Th2 cells by inducing Th1 responses may be protective against Th2-related diseases such as asthma and allergy. Interferon-gamma (IFN-gamma), the principal Th1 effector cytokine, has shown to be crucial for the resolution of allergic-related immunopathologies. In fact, reduced production of this cytokine has been correlated with severe asthma. In this review, we will discuss the role of IFN-gamma during the generation of immune responses and its influence on allergic inflammation models, emphasizing its biologic properties during the different aspects of allergic responses.
Resumo:
Human pulmonary tuberculosis (TB) is a worldwide public health problem. In resistant individuals, control of the infection mainly requires development of a Th1 cell immune response with production of cytokines, of which interferon-gamma (IFN-gamma)plays an important role. Several antigens from Mycobacterium tuberculosis complex has been described for use in vaccine development or for diagnostic purposes, however little evaluation has been done in endemic area for TB. The proliferative and IFN-gamma human T cell immune responses, to four recombinant proteins (MBP-3, NarL, MT-10.3, 16 kDa) and PPD, of 38 Brazilian TB patients (6 untreated and 32 treated) and 67 controls (38 positive and 29 negative tuberculin skin test - TST) were compared. The highest reactivity mean rate was obtained with PPD followed by 16 kDa in TB patients. While most of the patients (87%) and controls (> 64%) respond to the PPD, 16kDa was more specifically recognized (> 21%) although less sensitive (54%). When TB patients were divided according to treatment status, opposite to PPD, higher average level of IFN-gamma was induced by 16kDa in untreated (505 pg/ml) compared to treated TB patients and TST+ (269.8 pg/ml x 221.6pg/ml, respectively), although the difference was not significant. These data show that in contrast with the other recombinant proteins, the stimulatory potency of 16kDa to induce proliferative and INF-gamma response was more effective and is more recognized by active TB untreated patients, eliciting in control individuals a more selective immune response than PPD.
Resumo:
The need to develop a vaccine against schistosomiasis led several researches and our group to investigate proteins from Schistosoma mansoni as vaccine candidates. Sm22.6 is a protein from S. mansoni that shows high identity with Sj22.6 and Sh22.6 (79 and 91%, respectively). These proteins are associated with high levels of IgE and protection to reinfection. Previously, we have shown that Sm22.6 induced a partial protection of 34.5% when used together with Freund's adjuvant and produced a Th0 type of immune response with interferon-g and interleukin-4. In this work, mice were immunized with Sm22.6 alone or with aluminum hydroxide adjuvant and high levels of IgG, IgG1, and IgG2a were measured. Unfortunately, no protection was detected. Since IL-10 is a modulating cytokine in schistosomiasis, we also observed a high level of this molecule in splenocytes of vaccinated mice. In conclusion, we did not observe the adjuvant effect of aluminum hydroxide associated with rSm22.6 in protective immunity.
Resumo:
Toll-like receptors (TLRs) recognise pathogen-derived molecules and influence immunity to control parasite infections. This study aimed to evaluate the mRNA expression of TLRs 2 and 4, the expression and production of the cytokines interleukin (IL)-12, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, IL-17, IL-10 and transforming growth factor (TGF)-β and the production of nitric oxide (NO) in the spleen of mice infected with Leishmania chagasi. It also aimed to evaluate any correlations between mRNA expression TLR2 and 4 and cytokines and NO production. Infection resulted in increased TLR2-4, IL-17, TNF-α and TGF-β mRNA expression during early infection, with decreased expression during late infection correlating with parasite load. IFN-γ and IL-12 mRNA expression decreased at the peak of parasitism. IL-10 mRNA expression increased throughout the entire time period analysed. Although TGF-β, TNF-α and IL-17 were highly produced during the initial phase of infection, IFN-γ and IL-12 exhibited high production during the final phase of infection. IL-10 and NO showed increased production throughout the evaluated time period. In the acute phase of infection, there was a positive correlation between TLR2-4, TNF-α, IL-17, NO, IL-10 and TGF-β expression and parasite load. During the chronic phase of infection, there was a positive correlation between TLR2-4, TNF-α, IL-17 and TGF-β expression and parasite load. Our data suggest that infection by L. chagasi resulted in modulation of TLRs 2 and 4 and cytokines.
Resumo:
This study was designed to assess the effect of GB virus (GBV)-C on the immune response to human immunodeficiency virus (HIV) in chronically HIV-infected and HIV- hepatitis C virus (HCV)-co-infected patients undergoing antiretroviral therapy. A cohort of 159 HIV-seropositive patients, of whom 52 were HCV-co-infected, was included. Epidemiological data were collected and virological and immunological markers, including the production of interferon gamma (IFN-γ) and interleukin (IL)-2 by CD4, CD8 and Tγδ cells and the expression of the activation marker, CD38, were assessed. A total of 65 patients (40.8%) presented markers of GBV-C infection. The presence of GBV-C did not influence HIV and HCV replication or TCD4 and TCD8 cell counts. Immune responses, defined by IFN-γ and IL-2 production and CD38 expression did not differ among the groups. Our results suggest that neither GBV-C viremia nor the presence of E2 antibodies influence HIV and HCV viral replication or CD4 T cell counts in chronically infected patients. Furthermore, GBV-C did not influence cytokine production or CD38-driven immune activation among these patients. Although our results do not exclude a protective effect of GBV-C in early HIV disease, they demonstrate that this effect may not be present in chronically infected patients, who represent the majority of patients in outpatient clinics.
Resumo:
Omega-3 polyunsaturated fatty acids (n-3 PUFA) can modulate the immune system and their primary effect is on macrophage function. Paracoccidioidomycosis (PCM) is an endemic systemic mycosis in Latin America that is caused by the dimorphic fungus Paracoccidioides brasiliensis (Pb). Macrophages are the main defence against this pathogen and have microbicidal activity that is dependent on interferon-Γ and tumour necrosis factor (TNF)-α. These cytokines stimulate the synthesis of nitric oxide (NO) and hydrogen peroxide (H2O2), leading to the death of the fungus. To study the effect of n-3 PUFA on the host immune response during experimental PCM, macrophages that were obtained from animals infected with Pb18 and fed a diet enriched by linseed (LIN) oil were cultured and challenged with the fungus in vitro. The macrophage function was analysed based on the concentrations of TNF-α, NO and H2O2. LIN oil seems to influence the production of TNF-α during the development of disease. A diet enriched with LIN oil influences the microbicidal activity of the macrophages by inducing the production of cytokines and metabolites such as NO and H2O2, predominantly in the chronic phase of infection.