179 resultados para insecticidal activity
em Scielo Saúde Pública - SP
Resumo:
Bacillus thuringiensisis a ubiquitous Gram-positive and sporulating bacterium. Its crystals and secreted toxins are useful tools against larvae of diverse insect orders and, as a consequence, an alternative to recalcitrant chemical insecticides. We report here the draft genome sequence ofB. thuringiensis147, a strain isolated from Brazil and with high insecticidal activity. The assembled genome contained 6,167,994 bp and was distributed in seven replicons (a chromosome and 6 plasmids). We identified 12 coding regions, located in two plasmids, which encode insecticidal proteins.
Resumo:
The objective of this work was to establish and test the induced-feeding bioassay in order to detect Bacillus thuringiensis insecticidal activity against Epilachna paenulata (Coleoptera: Coccinellidae). Larvae were induced to swallow high concentrations of spore-crystal suspensions of seven exotic and 30 Argentine B. thuringiensis strains. The great majority of strains showed no toxicity to E. paenulata larvae, and observed mortality was lower than 30%. Induced-feeding bioassay is feasible, and should be used for prospecting strains that produce right combinations of Cry proteins needed to an efficient pest control.
Resumo:
The insecticidal activity and residual effect of two formulations of lambdacyhalothrin were evaluated with Rhodnius prolixus;laboratory and field tests were conducted in the State of Chiapas, Mexico. The results indicate that the lethal concentrations of the active ingredient of SC (LC50 = 2.37 and LC90 = 8.5 mg, a.i./m²) were 4-8 times than those with the insecticide WP applied on R. prolixus bugs in palm leaves, a common building material for thatched roofs. Other investigators in South America recommended applying 30 mg a.i./m² in porous materials; we obtained that the products WP and SC were 3.5 and 16 times more effective on palm leaves. Regarding the evaluation of the residual effects in field spraying, there was up to 15 months persistence after the application of WP in two doses (8.6 mg a.i./m² and 3.752 mg a.i./m²) with SC. We consider R. prolixus highly susceptible to the employed pyrethroids; they could be used to control this vector in the state of Chiapas, Mexico.
Resumo:
The selectivity of Bacillus thuringiensis toxins is determined both by the toxin structure and by factors inherent to the insect. These toxins contain distinct domains that appear to be functionally important in toxin binding to protein receptors in the midgut of susceptible insects, and the subsequent formation of a pore in the insect midgut epithelium. In this article features necessary for the insecticidal activity of these toxins are discussed. These include toxin structure, toxin processing in the insect midgut, the identification of toxin receptors in susceptible insects, and toxin pore formation in midgut cells. In addition a number of B. thuringiensis toxins act synergistically to exert their full insecticidal activity. This synergistic action is critical not only for expressing the insecticidal activity of these toxins, but could also play a role in delaying the onset of insect resistance.
Resumo:
The bacterium Bacillus thuringiensis (Bt) produces parasporal crystals containing delta-endotoxins responsible for selective insecticidal activity on larvae. Upon ingestion, these crystals are solubilized in the midgut lumen and converted into active toxins that bind to receptors present on the microvilli causing serious damage to the epithelial columnar cells. We investigated the effect of these endotoxins on larvae of the Simulium pertinax, a common black fly in Brazil, using several concentrations during 4 h of the serovar israelensis strain IPS-82 (LFB-FIOCRUZ 584), serotype H-14 type strain of the Institute Pasteur, Paris. Light and electron microscope observations revealed, by time and endotoxin concentration, increasing damages of the larvae midgut epithelium. The most characteristic effects were midgut columnar cell vacuolization, microvilli damages, epithelium cell contents passing into the midgut lumen and finally the cell death. This article is the first report of the histopathological effects of the Bti endotoxins in the midgut of S. pertinax larvae and the data obtained may contribute to a better understanding of the mode of action of this bacterial strain used as bioinsecticide against black fly larvae.
Resumo:
Triatoma infestans (Klug) is the main vector of Chagas disease, which is a public health concern in most Latin American countries. The prevention of Chagas disease is based on the chemical control of the vector using pyrethroid insecticides. In the last decade, different levels of deltamethrin resistance have been detected in certain areas of Argentina and Bolivia. Because of this, alternative non-pyrethroid insecticides from different chemical groups were evaluated against two T. infestans populations, NFS and El Malá, with the objective of finding new insecticides to control resistant insect populations. Toxicity to different insecticides was evaluated in a deltamethrin-susceptible and a deltamethrin-resistant population. Topical application of the insecticides fenitrothion and imidacloprid to first nymphs had lethal effects on both populations, producing 50% lethal dose (LD50) values that ranged from 5.2-28 ng/insect. However, amitraz, flubendiamide, ivermectin, indoxacarb and spinosad showed no insecticidal activity in first instars at the applied doses (LD50 > 200 ng/insect). Fenitrothion and imidacloprid were effective against both deltamethrin-susceptible and deltamethrin-resistant populations of T. infestans. Therefore, they may be considered alternative non-pyrethroid insecticides for the control of Chagas disease.
Resumo:
Bioactivity of Indonesian mahogany, Toona sureni (Blume) (Meliaceae), against the red flour beetle, Tribolium castaneum (Coleoptera, Tenebrionidae). The insecticidal activity of Toona sureni (Blume) Merr. was evaluated considering repellency, mortality and progeny production of F1 adults of Tribolium castaneum (Herbst, 1797) (Coleoptera, Tenebrionidae). Dried extract of seeds of T. sureni was dissolved in acetone to prepare solution of various concentrations (0.5, 1.0, 2.5 and 5.0%). To test for repellency, the insects were exposed to treated filter paper. Mortality of larvae, pupae and adults was evaluated by the treatment of spraying the insects with different concentrations of T. sureni extract. Residual effect of the extract was also evaluated considering the production of progeny of F1 adults. The highest repellency (93.30%) of T. castaneum occurred at the highest concentration (5.0% suspension of T. sureni); while the lowest (0.0%) repellency occurred at 0.5% suspension after 1 day of treatment. The highest mortality against adults (86.71%), larvae (88.32%) and pupae (85%) occurred at 5% suspension at 8 days after application. There was a negative correlation between the concentrations of T. sureni and the production of F1 adult's progeny of T. castaneum. The highest number of progeny (147) of T. castaneum occurred in the control at 7 days after treatment; and the lowest number of progeny (43) occurred at 5.0% concentration in 1 day after treatment. The results show that T. sureni is toxic to T. castaneum and has the potential to control all stages of this insect in stored wheat.
Resumo:
We investigated the use of Bacillus thuringiensis isolated in the state of Amazonas, in Brazil, for the biological control of the dengue vector Aedes aegypti. From 25 soil samples collected in nine municipalities, 484 bacterial colonies were obtained, 57 (11.78%) of which were identified as B. thuringiensis. Six isolates, IBt-03, IBt-06, IBt-07, IBt-28, IBt-30, and BtAM-27 showed insecticidal activity, and only BtAM-27 presents the five genes investigated cry4Aa, cry4Ba, cry10Aa, cry11Aa, and cry11Ba. The IBt-07 and IBt- 28, with lower LC50 values, showed equal toxicity compared to the standards. The isolates of B. thuringiensisfrom Amazonas constitute potential new means of biological control for A. aegypti, because of their larvicidal activity and the possibility that they may also contain new combinations of toxins.
Resumo:
The objective of this work was to assess the effects of Aspidosperma pyrifolium ethanol extracts on cabbage moth (Plutella xylostella) larvae. The ethanol extracts of the stem bark, fruits and roots of A. pyrifolium were obtained by classical phytochemical methods, and the resulting subfractions were tested on P. xylostella, using 4 and 5 mg L-1. The crude ethanol extract of the stem bark was more lethal. The alkaloid-rich aqueous subfraction derived from the stem bark extract caused 100% larval mortality at 4 mg L-1. Insecticidal activity was associated with the presence of the monoterpenoid indole alkaloids aspidofractinine, 15-demethoxypyrifoline, and N-formylaspidofractinine. These alkaloids presented excellent insecticidal properties against P. xylostella.
Resumo:
The objective of this work was to develop an experimental kit for assessments of repellency, deterrence for oviposition, and insecticidal activity on adults of the whitefly Bemisia tabaci biotype B. The kit, which consisted of arenas and nebulizer, was effective for conducting bioassays, and the application of aqueous extracts by inhaler was adequate. The techniques are simple, cheap, and may contribute to research on this insect.
Resumo:
This study aimed to verify the chloroform-methanol nymphicidal action of extracts of Annona mucosa leaves and seeds and of A. crassiflora seeds on second instar nymphs of rice stalk stink bug, Tibraca limbativentris. For each extract the concentrations of 0.5%, 1.0%, 2.0%, 4.0%, 8.0%, and two control treatments (water and Tween80®) were used. The results show that the seed extracts of A. mucosa and A. crassiflora have insecticidal activity against the T. limbativentris nymphs with statistical significance for all concentrations when compared with controls. The seed extract of A. mucosa showed the higher toxicity with greater than 75% mortality at a concentration of 1.0% in the first 24 h after application. The leaf extract of A. mucosa presented the lowest toxicity with no more than 40% mortality. The seed extract of A. crassiflora showed intermediate toxicity among all the tested extracts, and the nymph's mortality exceeded 80% for the highest concentration after 120 h of application. Considering these results, we were able to observe that the seeds extract of A. mucosa may be an alternative for the control of bed bug nymphs T. limbatriventris, especially for small producers.
Resumo:
Phytochemical investigation of the fruits extracts of Trichilia elegans and Trichilia catigua (Meliaceae) has led to the identification of the limonoids 11β-acetoxyobacunone, cedrelone, methylangolensate and epimeric mixture of photogedunin besides known coumarins (scoparone, scopoletin, umbeliferone) and the steroids stigmasterol, β-sitosterol, sitostenone and campesterol. The structures of the compounds were proposed by spectroscopic analysis and comparison with literature data. An evaluation of the insecticidal activity of the fruits extracts of Trichilia ssp. was carried out and the extracts of T. elegans revealed to have strong insecticidal activity and the extracts of T. catigua showed moderate larval mortality on Spodoptera frugiperda.
Resumo:
An evaluation of the insecticidal activity of the fruits extracts of Trichilia claussenii was carried out and the methanol extract revealed to have strong insecticidal activity. The fractionation of methanol extract of T. claussenii seeds bioassay-guided against Spodoptera frugiperda has led to the identification of the ω-phenylalkyl and alkenyl fatty acids as active compounds in this extract. The structures of the compounds were proposed by spectroscopic analysis and comparison with literature data.
Resumo:
Insecticidal activity of essential oils of Pelargonium graveolens, Lippia alba and compounds geraniol, linalool, 1,8-cineole, limonene, carvone, citral and Azamax® were evaluated against Spodoptera frugiperda. Topical application assay showed essential oil of P. graveolens has acute toxicity against Spodoptera frugiperda larvae (third instar) with LD50 1.13 µg/mg per insect and LD90 2.56 µg/mg per insect. Three essential oils of L. alba also exhibited insecticidal activity with LD50 ranging from 1.20 to 1.56 µg/mg per insect and LD90 from 2.60 to 3.75 µg/mg per insect. Geraniol, linalool, carvone and citral caused significant mortality of 30, 90, 84 and 64% respectively, compared to negative control. The bioinsecticide, Azamax®, caused lower mortality than the compounds of the essential oils.
Resumo:
The objective of the present study was the exogenous stimulation of ovarian activity and definition of embryo collection, and transfer protocols, in the domestic cat for potential application in non-domestic endangered species. Sixteen adult queens and two adult male reproducers kept in the experimental cat house at the Morphology sector at the Veterinary Department (DVT), UFV, were used in this study. All the queens received a single application of 150 IU Equine Chorionic Gonadotropin (eCG) in the post estrus to induce ovarian activity and 80 to 84 hours later, received a single application of 100 UI Human Chorionic Gonadotropin (hCG) to induce ovulation. After hCG application, only the donor queens were naturally mated. The receptor queens received extra stimulus for induction of ovulation through manipulation of an intravaginal swab. Five to six days after hCG application, the donor queens were subjected to a laparotomy for embryo collection that was performed by trans-horn uterine washing. On average, six embryos were surgically inovulated. They were classified as type I and III compact morula and blastocysts in four receptor queens. Three animals presented pregnancy confirmed by ultrasound at day 36 and two of these animals gave birth to litters of two and four offsprings, respectively, at 66 and 63 days after induction of ovulation. Except for one still birth, all the offspring developed normally.