36 resultados para inflammatory responses

em Scielo Saúde Pública - SP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leishmania amazonensis causes different diseases depending on the host and parasitic virulence factors. In this study, CBA mice were infected with L. amazonensis isolates from patients with localized (Ba125), diffuse cutaneous (Ba276) or visceral leishmaniasis (Ba109). Mice infected with Ba125 and Ba276 progressed rapidly and lesions displayed an infiltrate rich in parasitized macrophages and were necrotic and ulcerated. Ba109 induced smaller lesions and a mixed inflammatory infiltrate without necrosis or ulceration. Ba109 induced an insidious disease with lower parasite load in CBA mice, similar to human disease. Levels of IFN-γ, IL-4 and IL-10 did not differ among the groups. Because all groups were unable to control the infection, expression of IL-4 associated with low production of IFN-γ in the early phase of infection may account for susceptibility, but others factors may contribute to the differences observed in inflammatory responses and infection progression. Evaluation of some parasitic virulence factors revealed that Ba276 exhibits higher ecto-ADPase and 5'-nucleotidase activities compared to the Ba109 and Ba125 strains. Both Ba276 and Ba125 had higher arginase activity in comparison to Ba109. Finally, these data suggest that the differences in enzyme activities among parasites can account for differences in host inflammatory responses and infection progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The anti-inflammatory effects of long-term ethanol intoxication were determined during ethanol treatment and withdrawal on the basis of neutrophil and eosinophil migration, hind paw edema and mast cell degranulation. Male Wistar rats (180-200 g, around 2 months of age) were exposed to increasing concentrations of ethanol vapor over a 10-day period. One group was evaluated immediately after exposure (treated group - intoxicated), and another was studied 7 h later (withdrawal group). Ethanol inhalation treatment significantly inhibited carrageenan- (62% for the intoxicated group, N = 5, and 35% for the withdrawal group, N = 6) and dextran-induced paw edema (32% for intoxicated rats and 26% for withdrawal rats, N = 5 per group). Ethanol inhalation significantly reduced carrageenan-induced neutrophil migration (95% for intoxicated rats and 41% for withdrawn rats, N = 6 per group) into a subcutaneous 6-day-old air pouch, and Sephadex-induced eosinophil migration to the rat peritoneal cavity (100% for intoxicated rats and 64% for withdrawn rats, N = 6 per group). A significant decrease of mast cell degranulation was also demonstrated (control, 82%; intoxicated, 49%; withdrawn, 51%, N = 6, 6 and 8, respectively). Total leukocyte and neutrophil counts in venous blood increased significantly during the 10 days of ethanol inhalation (leukocytes, 13, 27 and 40%; neutrophils, 42, 238 and 252%, respectively, on days 5, 9 and 10, N = 7, 6 and 6). The cell counts decreased during withdrawal, but were still significantly elevated (leukocytes, 10%; neutrophils, 246%, N = 6). These findings indicate that both the cellular and vascular components of the inflammatory response are compromised by long-term ethanol intoxication and remain reduced during the withdrawal period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidative stress plays a major role in the pathogenesis of particle-dependent lung injury. Ambient particle levels from vehicles have not been previously shown to cause oxidative stress to the lungs. The present study was conducted to a) determine whether short-term exposure to ambient levels of particulate air pollution from vehicles elicits inflammatory responses and lipid peroxidation in rat lungs, and b) determine if intermittent short-term exposures (every 4 days) induce some degree of tolerance. Three-month-old male Wistar rats were exposed to ambient particulate matter (PM) from vehicles (N = 30) for 6 or 20 continuous hours, or for intermittent (5 h) periods during 20 h for 4 consecutive days or to filtered air (PM <10 µm; N = 30). Rats continuously breathing polluted air for 20 h (P-20) showed a significant increase in the total number of leukocytes in bronchoalveolar lavage compared to control (C-20: 2.61 x 105 ± 0.51;P-20: 5.01 x 105 ± 0.81; P < 0.05) and in lipid peroxidation ([MDA] nmol/mg protein: C-20: 0.148 ± 0.01; P-20: 0.226 ± 0.02; P < 0.05). Shorter exposure (6 h) and intermittent 5-h exposures over a period of 4 days did not cause significant changes in leukocytes. Lipid damage resulting from 20-h exposure to particulate air pollution did not cause a significant increase in lung water content. These data suggest oxidative stress as one of the mechanisms responsible for the acute adverse respiratory effects of particles, and suggest that short-term inhalation of ambient particulate air pollution from street with high automobile traffic represents a biological hazard.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Eosinophils have long been thought to be effectors of immunity to helminths but have also been implicated in the pathogenesis of asthma. Patterns of cytokine production in the host may influence the pathogenesis of these diseases by regulating the activities of eosinophils and other components of the immune response. Mice which constitutively over-express IL-5 have profound and life-long eosinophilia in a restricted number of tissues. Although eosinophils from IL-5 transgenics are functionally competent for a number of parameters considered to be important in inflammation, untreated animals are overtly normal and free of disease. In addition, the responses of these animals when exposed to aeroallergens and helminths present a number of apparent paradoxes. Eosinophil accumulation in tissues adjacent to major airways is rapid and extensive in transgenics exposed to the aeroallergen, but even after treatment with antigen over many months these mice show no evidence of respiratory distress or pathology. Helminth-infected IL-5 transgenics and their non-transgenic littermates develop similar inflammatory responses at mucosal sites and are comparable for a number of T cell and antibody responses, but they differ considerably in their ability to clear some parasite species. The life-cycle of Nippostrongylus brasiliensis is significantly inhibited in IL-5 transgenics, but that of Toxocara canis is not. Our results also suggest that eosinophilia and/or over-expression of IL-5 may actually impair host resistance to Schistosoma mansoni and Trichinella spiralis. The pathogenesis of diseases in which eosinophils are involved may therefore be more complex than previously thought.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nitric oxide (NO) plays an important role in mediating many aspects of inflammatory responses. NO is an effector molecule of cellular injury, and can act as an anti-oxidant. It can modulate the release of various inflammatory mediators from a wide range of cells participating in inflammatory responses (e.g., leukocytes, macrophages, mast cells, endothelial cells, and platelets). It can modulate blood flow, adhesion of leukocytes to the vascular endothelium and the activity of numerous enzymes, all of which can have an impact on inflammatory responses. In recent years, NO-releasing drugs have been developed, usually as derivatives of other drugs, which exhibit very powerful anti-inflammatory effects.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Platelet-activating factor (PAF) is one of the most potent lipid mediators involved in inflammatory events. The acetyl group at the sn-2 position of its glycerol backbone is essential for its biological activity. Deacetylation induces the formation of the inactive metabolite lyso-PAF. This deacetylation reaction is catalyzed by PAF-acetylhydrolase (PAF-AH), a calcium independent phospholipase A2 that also degrades a family of PAF-like oxidized phospholipids with short sn-2 residues. Biochemical and enzymological evaluations revealed that at least three types of PAF-AH exist in mammals, namely the intracellular types I and II and a plasma type. Many observations indicate that plasma PAF AH terminates signals by PAF and oxidized PAF-like lipids and thereby regulates inflammatory responses. In this review, we will focus on the potential of PAF-AH as a modulator of diseases of dysregulated inflammation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Although the attenuated Mycobacterium bovis Bacillus Calmette-Guérin (BCG) vaccine has been used since 1921, tuberculosis (TB) control still proceeds at a slow pace. The main reason is the variable efficacy of BCG protection against TB among adults, which ranges from 0-80%. Subsequently, the mc2-CMX vaccine was developed with promising results. Nonetheless, this recombinant vaccine needs to be compared to the standard BCG vaccine. The objective of this study was to evaluate the immune response induced by mc2-CMX and compare it to the response generated by BCG. BALB/c mice were immunised with both vaccines and challenged withMycobacterium tuberculosis (Mtb). The immune and inflammatory responses were evaluated by ELISA, flow cytometry, and histopathology. Mice vaccinated with mc2-CMX and challenged with Mtb induced an increase in the IgG1 and IgG2 levels against CMX as well as recalled specific CD4+ T-cells that produced T-helper 1 cytokines in the lungs and spleen compared with BCG vaccinated and challenged mice. Both vaccines reduced the lung inflammatory pathology induced by the Mtb infection. The mc2-CMX vaccine induces a humoral and cellular response that is superior to BCG and is efficiently recalled after challenge with Mtb, although both vaccines induced similar inflammatory reductions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

1. Fish oils are rich in the long-chain n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) acids. Linseed oil and green plant tissues are rich in the precursor fatty acid, a-linolenic acid (18:3n-3). Most vegetable oils are rich in the n-6 PUFA linoleic acid (18:2n-6), the precursor of arachidonic acid (20:4n-6). 2. Arachidonic acid-derived eicosanoids such as prostaglandin E2 are pro-inflammatory and regulate the functions of cells of the immune system. Consumption of fish oils leads to replacement of arachidonic acid in cell membranes by eicosapentaenoic acid. This changes the amount and alters the balance of eicosanoids produced. 3. Consumption of fish oils diminishes lymphocyte proliferation, T-cell-mediated cytotoxicity, natural killer cell activity, macrophage-mediated cytotoxicity, monocyte and neutrophil chemotaxis, major histocompatibility class II expression and antigen presentation, production of pro-inflammatory cytokines (interleukins 1 and 6, tumour necrosis factor) and adhesion molecule expression. 4. Feeding laboratory animals fish oil reduces acute and chronic inflammatory responses, improves survival to endotoxin and in models of autoimmunity and prolongs the survival of grafted organs. 5. Feeding fish oil reduces cell-mediated immune responses. 6. Fish oil supplementation may be clinically useful in acute and chronic inflammatory conditions and following transplantation. 7. n-3 PUFAs may exert their effects by modulating signal transduction and/or gene expression within inflammatory and immune cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Carpotroche brasiliensis is a native Brazilian tree belonging to the Oncobeae tribe of Flacourtiaceae. The oil extracted from its seeds contains as major constituents the same cyclopentenyl fatty acids hydnocarpic (40.5%), chaulmoogric (14.0%) and gorlic (16.1%) acids found in the better known chaulmoogra oil prepared from the seeds of various species of Hydnocarpus (Flacourtiaceae). These acids are known to be related to the pharmacological activities of these plants and to their use as anti-leprotic agents. Although C. brasiliensis oil has been used in the treatment of leprosy, a disease that elicits inflammatory responses, the anti-inflammatory and analgesic activities of the oil and its constituents have never been characterized. We describe the anti-inflammatory and antinociceptive activities of C. brasiliensis seed oil in acute and chronic models of inflammation and in peripheral and central nociception. The mixture of acids from C. brasiliensis administered orally by gavage showed dose-dependent (10-500 mg/kg) anti-inflammatory activity in carrageenan-induced rat paw edema, inhibiting both the edema by 30-40% and the associated hyperalgesia. The acid fraction (200 mg/kg) also showed significant antinociceptive activity in acetic acid-induced constrictions (57% inhibition) and formalin-induced pain (55% inhibition of the second phase) in Swiss mice. No effects were observed in the hot-plate (100 mg/kg; N = 10), rota-road (200 mg/kg; N = 9) or adjuvant-induced arthritis (50 mg/kg daily for 7 days; N = 5) tests, the latter a chronic model of inflammation. The acid fraction of the seeds of C. brasiliensis which contains cyclopentenyl fatty acids is now shown to have significant oral anti-inflammatory and peripheral antinociceptive effects.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Physical exercise triggers coordinated physiological responses to meet the augmented metabolic demand of contracting muscles. To provide adequate responses, the brain must receive sensory information about the physiological status of peripheral tissues and organs, such as changes in osmolality, temperature and pH. Most of the receptors involved in these afferent pathways express ion channels, including transient receptor potential (TRP) channels, which are usually activated by more than one type of stimulus and are therefore considered polymodal receptors. Among these TRP channels, the TRPV1 channel (transient receptor potential vanilloid type 1 or capsaicin receptor) has well-documented functions in the modulation of pain sensation and thermoregulatory responses. However, the TRPV1 channel is also expressed in non-neural tissues, suggesting that this channel may perform a broad range of functions. In this review, we first present a brief overview of the available tools for studying the physiological roles of the TRPV1 channel. Then, we present the relationship between the TRPV1 channel and spontaneous locomotor activity, physical performance, and modulation of several physiological responses, including water and electrolyte balance, muscle hypertrophy, and metabolic, cardiovascular, gastrointestinal, and inflammatory responses. Altogether, the data presented herein indicate that the TPRV1 channel modulates many physiological functions other than nociception and thermoregulation. In addition, these data open new possibilities for investigating the role of this channel in the acute effects induced by a single bout of physical exercise and in the chronic effects induced by physical training.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study aimed to determine the existence of blood vessels within ganglia of the myenteric plexus of the human esophagus and colon. At necropsy, 15 stillborns, newborns and children up to two years of age, with no gastrointestinal disorders, were examined. Rings of the esophagus and colon were analyzed and then fixed in formalin and processed for paraffin. Histological sections were stained by hematoxylin-eosin, Giemsa and immunohistochemistry for the characterization of endothelial cells, using antibodies for anti-factor VIII and CD31. Blood vessels were identified within the ganglia of the myenteric plexus of the esophagus, and no blood vessels were found in any ganglia of the colon. It was concluded that the ganglia of the myenteric plexus of the esophagus are vascularized, while the ganglia of the colon are avascular. Vascularization within the esophageal ganglia could facilitate the entrance of infectious agents, as well as the development of inflammatory responses (ganglionitis) and denervation, as found in Chagas disease and idiopathic achalasia. This could explain the higher frequency of megaesophagus compared with megacolon.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Leprosy spectrum and outcome is associated with the host immune response against Mycobacterium leprae. The role of coinfections in leprosy patients may be related to a depression of cellular immunity or amplification of inflammatory responses. Leprosy remains endemic in several regions where human T cell lymphotrophic virus type 1 (HTLV-1), hepatitis B virus (HBV) or hepatitis C virus (HCV) are also endemic. We have evaluated the evidence for the possible role of these viruses in the clinical manifestations and outcomes of leprosy. HTLV-1, HBV and HCV are associated with leprosy in some regions and institutionalization is an important risk factor for these viral coinfections. Some studies show a higher prevalence of viral coinfection in lepromatous cases. Although HBV and HCV coinfection were associated with reversal reaction in one study, there is a lack of information about the consequences of viral coinfections in leprosy. It is not known whether clinical outcomes associated with leprosy, such as development of reactions or relapses could be attributed to a specific viral coinfection. Furthermore, whether the leprosy subtype may influence the progression of the viral coinfection is unknown. All of these important and intriguing questions await prospective studies to definitively establish the actual relationship between these entities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chemokines are members of a family of more than 30 human cytokines whose best-described activities are as chemotactic factors for leukocytes and that are presumed to be important in leukocyte recruitment and trafficking. While many chemokines can act on lymphocytes, the roles of chemokines and their receptors in lymphocyte biology are poorly understood. The recent discoveries that chemokines can suppress infection by HIV-1 and that chemokine receptors serve, along with CD4, as obligate co-receptors for HIV-1 entry have lent urgency to studies on the relationships between chemokines and lymphocytes. My laboratory has characterized Mig and Crg-2/IP-10, chemokines that are induced by IFN-g and that specifically target lymphocytes, particularly activated T cells. We have demonstrated that the genes for these chemokines are widely expressed during experimental infections in mice with protozoan and viral pathogens, but that the patterns of mig and crg-2 expression differed, suggesting non-redundant roles in vivo. Our related studies to identify new chemokine receptors from activated lymphocytes resulted in the cloning of STRL22 and STRL33. We and others have shown that STRL22 is a receptor for the CC chemokine MIP-3a, and STRL22 has been re-named CCR6. Although STRL33 remains an orphan receptor, we have shown that it can function as a co-receptor for HIV-1 envelope glycoproteins, and that it is active with a broader range of HIV-1 envelope glycoproteins than the major co-receptors described to date. The ability of STRL33 to function with a wide variety of envelope glycoproteins may become particularly important if therapies are instituted to block other specific co-receptors. We presume that investigations into the roles of chemokines and their receptors in lymphocyte biology will provide information important for understanding the pathogenesis of AIDS and for manipulating immune and inflammatory responses for clinical benefit

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fatty acids have various effects on immune and inflammatory responses, acting as intracellular and intercellular mediators. Polyunsaturated fatty acids (PUFAs) of the omega-3 family have overall suppressive effects, inhibiting lymphocyte proliferation, antibody and cytokine production, adhesion molecule expression, natural killer cell activity and triggering cell death. The omega-6 PUFAs have both inhibitory and stimulatory effects. The most studied of these is arachidonic acid that can be oxidized to eicosanoids, such as prostaglandins, leukotrienes and thromboxanes, all of which are potent mediators of inflammation. Nevertheless, it has been found that many of the effects of PUFA on immune and inflammatory responses are not dependent on eicosanoid generation. Fatty acids have also been found to modulate phagocytosis, reactive oxygen species production, cytokine production and leukocyte migration, also interfering with antigen presentation by macrophages. The importance of fatty acids in immune function has been corroborated by many clinical trials in which patients show improvement when submitted to fatty acid supplementation. Several mechanisms have been proposed to explain fatty acid modulation of immune response, such as changes in membrane fluidity and signal transduction pathways, regulation of gene transcription, protein acylation, and calcium release. In this review, evidence is presented to support the proposition that changes in cell metabolism also play an important role in the effect of fatty acids on leukocyte functioning, as fatty acids regulate glucose and glutamine metabolism and mitochondrial depolarization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Angiotensin II (Ang II)* is a multifunctional hormone that influences the function of cardiovascular cells through a complex series of intracellular signaling events initiated by the interaction of Ang II with AT1 and AT2 receptors. AT1 receptor activation leads to cell growth, vascular contraction, inflammatory responses and salt and water retention, whereas AT2 receptors induce apoptosis, vasodilation and natriuresis. These effects are mediated via complex, interacting signaling pathways involving stimulation of PLC and Ca2+ mobilization; activation of PLD, PLA2, PKC, MAP kinases and NAD(P)H oxidase, and stimulation of gene transcription. In addition, Ang II activates many intracellular tyrosine kinases that play a role in growth signaling and inflammation, such as Src, Pyk2, p130Cas, FAK and JAK/STAT. These events may be direct or indirect via transactivation of tyrosine kinase receptors, including PDGFR, EGFR and IGFR. Ang II induces a multitude of actions in various tissues, and the signaling events following occupancy and activation of Ang receptors are tightly controlled and extremely complex. Alterations of these highly regulated signaling pathways may be pivotal in structural and functional abnormalities that underlie pathological processes in cardiovascular diseases such as cardiac hypertrophy, hypertension and atherosclerosis.