59 resultados para in beam gamma-spectroscopy
em Scielo Saúde Pública - SP
Resumo:
Isolation of Leishmania parasite and species identification are important for confirmation and to help define the epidemiology of the leishmaniasis. Mice are often used to isolate pathogens, but the most common mouse strains are resistant to infection with parasites from the Leishmania (Viannia) subgenus. In this study we tested the inoculation of interferon gamma knockout (IFNγ KO) mice with biopsy macerates from Leishmania-infected patients to increase the possibility of isolating parasites. Biopsies from twenty five patients with clinical signs of leishmaniasis were taken and tested for the presence of parasites. Immunohistochemical assay (IHC) and conventional histopathology detected the parasite in 88% and 83% of the patients, respectively. Leishmania sp. were isolated in biopsy macerates from 52% of the patients by culture in Grace's insect medium, but 13% of isolates were lost due to contamination. Inoculation of macerates in IFNγ KO mice provides isolation of parasites in 31.8% of the biopsies. Most isolates belong to L. (Viannia) subgenus, as confirmed by PCR, except one that belongs to L. (Leishmania) subgenus. Our preliminary results support the use of IFNγ KO mice to improve the possibility to isolate New World Leishmania species.
Resumo:
Patients with acute schistosomiasis were studied before and after oxamniquine treatment. They had been exposed to cercariae 5 to 9 weeks before, and presented compatible clinical manifestations, eosinophilia, and high levels of total IgE. Interferon-gamma (IFN-gamma) and interleukin-4 were measured by ELISA in whole blood samples under soluble egg antigen or soluble adult worm preparation stimulation. After treatment, the reduction of leukocytosis and eosinophilia were not significant, but total IgE levels decreased significantly, in contrast to IFN-gamma levels that were significantly increased. The oxamniquine treatment of acute schistosomiasis patients is followed by an improvement of a Th1 response in vitro. If this response has a protective aspect is unknown, and some investigations need to be realized.
Resumo:
Macrophages are critical for natural immunity and play a central role in specific acquired immunity. The IFN-gamma activation of macrophages derived from A/J or BALB/c mice yielded two different patterns of antiviral state in murine hepatitis virus 3 infection, which were related to a down-regulation of the main virus receptor. Using cDNA hybridization to evaluate mRNA accumulation in the cells, we were able to identify several genes that are differently up- or down-regulated by IFN-gamma in A/J (267 and 266 genes, respectively, up- and down-regulated) or BALB/c (297 and 58 genes, respectively, up- and down-regulated) mouse macrophages. Macrophages from mice with different genetic backgrounds behave differently at the molecular level and comparison of the patterns of non-activated and IFN-gamma-activated A/J or BALB/c mouse macrophages revealed, for instance, an up-regulation and a down-regulation of genes coding for biological functions such as enzymatic reactions, nucleic acid synthesis and transport, protein synthesis, transport and metabolism, cytoskeleton arrangement and extracellular matrix, phagocytosis, resistance and susceptibility to infection and tumors, inflammation, and cell differentiation or activation. The present data are reported in order to facilitate future correlation of proteomic/transcriptomic findings as well as of results obtained from a classical approach for the understanding of biological phenomena. The possible implication of the role of some of the gene products relevant to macrophage biology can now be further scrutinized. In this respect, a down-regulation of the main murine hepatitis virus 3 receptor gene was detected only in IFN-gamma-activated macrophages of resistant mice.
Resumo:
Actin-based motor protein requirements and nitric oxide (NO) production are important features of macrophage activity during phagocytosis or microbicidal processes. Different classes of myosins contribute directly or indirectly to phagocytosis by providing mechanical force for phagosome closure or organelle movement. Recent data have shown the presence of myosins IC, II, V and IXb in phagosomes of bone marrow-derived murine macrophages. In our investigation we demonstrated the presence of different classes of myosins in J774 macrophages. We also analyzed the effect of gamma interferon (IFN-gamma), with or without calcium ionophore or cytochalasin B, on myosins as well as on inducible nitric oxide synthase (iNOS) expression and NO production. Myosins IC, II, Va, VI and IXb were identified in J774 macrophages. There was an increase of myosin V expression in IFN-gamma-treated cells. iNOS expression was increased by IFN-gamma treatment, while calcium ionophore and cytochalasin B had a negative influence on both myosin and iNOS expression, which was decreased. The increases in NO synthesis were reflected by increased iNOS expression. Macrophages activated by IFN-gamma released significant amounts of NO when compared to control groups. In contrast, NO production by calcium ionophore- and cytochalasin B-treated cells was similar to that of control cells. These results suggest that IFN-gamma is involved in macrophage activation by stimulating protein production to permit both phagocytosis and microbicidal activity.
Resumo:
Insulin-dependent diabetes mellitus is caused by autoimmune destruction of pancreatic ß cells. Non-obese diabetic (NOD) mice spontaneously develop diabetes similar to the human disease. Cytokines produced by islet-infiltrating mononuclear cells may be directly cytotoxic and can be involved in islet destruction coordinated by CD4+ and CD8+ cells. We utilized a semiquantitative RT-PCR assay to analyze in vitro the mRNA expression of TNF-alpha and IFN-gamma cytokine genes in isolated islets (N = 100) and spleen cells (5 x 10(5) cells) from female NOD mice during the development of diabetes and from female CBA-j mice as a related control strain that does not develop diabetes. Cytokine mRNAs were measured at 2, 4, 8, 14 and 28 weeks of age from the onset of insulitis to the development of overt diabetes. An increase in IFN-gamma expression in islets was observed for females aged 28 weeks (149 ± 29 arbitrary units (AU), P<0.05, Student t-test) with advanced destructive insulitis when compared with CBA-j mice, while TNF-alpha was expressed in both NOD and CBA-j female islets at the same level at all ages studied. In contrast, TNF-alpha in spleen was expressed at higher levels in NOD females at 14 weeks (99 ± 8 AU, P<0.05) and 28 weeks (144 ± 17 AU, P<0.05) of age when compared to CBA-j mice. The data suggest that IFN-gamma and TNF-alpha expression in pancreatic islets of female NOD mice is associated with ß cell destruction and overt diabetes.
Resumo:
American tegumentary leishmaniasis presents as two major clinical forms: localized cutaneous leishmaniasis (LCL) and mucocutaneous leishmaniasis (MCL). The immune response in leishmaniasis is efficiently evaluated by the response to Leishmania antigen through the Montenegro skin test (MST). Both LCL and MCL present positive response to MST, indicating that the patients present cell-mediated immunity against the parasite - Leishmania. In spite of the presence of immunity in MCL, this is not sufficient to stop disease progression and prevent resistance to treatment. In this study we demonstrated interleukin (IL) 2, 4, 5 and interferon (IFN) gamma expression in biopsies of MST of ten patients with American tegumentary leishmaniasis. The obtained results were compared between LCL (n = 5) and MCL (n = 5) patients. The MST of MCL patients displayed a higher expression of IL-2, IL-4 and IL-5, in comparison to LCL. There was no significant difference in IFN-gamma expression between groups. The obtained results suggest the role of IL-4 and IL-5 in the maintenance of the immunopathogenic mechanism of the destructive lesions that characterize MCL.
Resumo:
Scanning electron microscopy applied to the mycelial phase of Sporothrix schenckii shows a matted mycelium with conidia of a regular pattern. X-Ray microanalysis applied in energy dispersive spectroscopy and also in wavelength dispersive spectroscopy reveals the presence of several elements of Mendeleef's classification.
Resumo:
Schistosoma mansoni infections are associated with a strong Th2 cytokine response. Treatment of mice with IL-12 or anti-IL-2 or anti-IL-4 before i.v. injection of eggs increased IFN-gamma production and downregulated Th2 responses and pulmonary granuloma size. Conversely, anti-IFN-gamma antibody treatment increased Th2 responses and granuloma size. Similar manipulation produced less dramatic results in infected mice. However, sensitization of mice with eggs + IL-12 before infection augmented the Th1 response and decreased Th2 cytokines, granuloma size and fibrosis. Antisera to IFN-gamma, TNF-alpha or IL-12 during IL-12-egg immunization partly restored granuloma size and fibrosis following infection. Variations in the size of granulomas in acute (8 week) infections may be influenced primarily by the number and state of activation of T cells. In chronic (12-16 week) infections immunologic downmodulation proceeded normally in mice without functional CD8+ cells and in IFN-gamma KO mice but not in B cell KO (muMT) mice or in mice deficient in FcR expression in spite of the fact that these mice downregulated their T cell and cytokine responses. It is evident that the participation of cytokines in granuloma formation and regulation is complicated and that the mechanisms controlling both these phenomena are likely to involve both T cells and antibody/FcR interactions.
Resumo:
We have compared the efficacy of two Leishmania (Leishmania) major vaccines, one genetically attenuated (DHFR-TS deficient organisms), the other inactivated [autoclaved promastigotes (ALM) with bacillus Calmete-Guérin (BCG)], in protecting rhesus macaques (Macaca mulatta) against infection with virulent L. (L.) major. Positive antigen-specific recall proliferative response was observed in vaccinees (79% in attenuated parasite-vaccinated monkeys, versus 75% in ALM-plus-BCG-vaccinated animals), although none of these animals exhibited either augmented in vitro gamma interferon (IFN-g) production or positive delayed-type hypersensitivity (DTH) response to the leishmanin skin test prior to the challenge. Following challenge, there were significant differences in blastogenic responses (p < 0.05) between attenuated-vaccinated monkeys and naïve controls. In both vaccinated groups very low levels of antibody were found before challenge, which increased after infective challenge. Protective immunity did not follow vaccination, in that monkeys exhibited skin lesion at the site of challenge in all the groups. The most striking result was the lack of pathogenicity of the attenuated parasite, which persisted in infected animals for up to three months, but were incapable of causing disease under the conditions employed. We concluded that both vaccine protocols used in this study are safe in primates, but require further improvement for vaccine application.
Resumo:
The aim of this work was to study the difference in interferon gamma (IFN-gamma) production by T lymphocytes after early secretory antigen target 6 (ESAT-6) or purified protein derivate (PPD) stimulation in whole blood culture supernatants from children with suspected tuberculosis (TB) disease (n = 21), latent TB infection (n = 16) and negative controls (NC) (n = 22) from an endemic area in Brazil. The concentration of IFN-gamma (pg/ml) was measured by enzyme linked immunosorbent assay and the differences in the IFN-gamma levels for each group were compared and evaluated using an unpaired Student's t-test; p values < 0.05 were considered significant. Measurement of IFN-gamma levels after ESAT-6 stimulation raised the possibility of early diagnosis in the latent TB group (p = 0.0030). Nevertheless, the same group showed similar responses to the NC group (p > 0.05) after PPD stimulation. The IFN-gamma assay using ESAT-6 as an antigenic stimulus has the potential to be used as a tool for the immunodiagnosis of early TB in children.
Resumo:
The gut mucosa is a major site of contact with antigens from food and microbiota. Usually, these daily contacts with natural antigens do not result in inflammatory reactions; instead they result in a state of systemic hyporesponsiveness named oral tolerance. Inflammatory bowel diseases (IBD) are associated with the breakdown of the immunoregulatory mechanisms that maintain oral tolerance. Several animal models of IBD/colitis are available. In mice, these include targeted disruptions of the genes encoding cytokines, T cell subsets or signaling proteins. Colitis can also be induced by intrarectal administration of chemical substances such as 2,4,6-trinitrobenzene sulfonic acid in 50% ethanol. We report here a novel model of colitis induced by intrarectal administration of 50% ethanol alone. Ethanol-treated mice develop an inflammatory reaction in the colon characterized by an intense inflammatory infiltrate in the mucosa and submucosa of the large intestine. They also present up-regulation of both interferon gamma (IFN-gamma) and interleukin-4 (IL-4) production by cecal lymph node and splenic cells. These results suggest a mixed type of inflammation as the substrate of the colitis. Interestingly, cells from mesenteric lymph nodes of ethanol-treated mice present an increase in IFN-gamma production and a decrease in IL-4 production indicating that the cytokine balance is altered throughout the gut mucosa. Moreover, induction of oral tolerance to ovalbumin is abolished in these animals, strongly suggesting that ethanol-induced colitis interferes with immunoregulatory mechanisms in the intestinal mucosa. This novel model of colitis resembles human IBD. It is easy to reproduce and may help us to understand the mechanisms involved in IBD pathogenesis.
Resumo:
Dipyrone administered intravenously (iv) or intracerebroventricularly (icv) delays gastric emptying (GE) in rats. Gamma-aminobutyric acid (GABA) is the most potent inhibitory neurotransmitter of the central nervous system. The objective of the present study was to determine the effect of icv baclofen, a GABA B receptor agonist, on delayed GE induced by dipyrone. Adult male Wistar rats received a saline test meal containing phenol red as a marker. GE was indirectly evaluated by determining the percent of gastric retention (%GR) of the meal 10 min after orogastric administration. In the first experiment, the animals were injected iv with vehicle (Civ) or 80 mg/kg (240 µmol/kg) dipyrone (Dp iv), followed by icv injection of 10 µl vehicle (bac0), or 0.5 (bac0.5), 1 (bac1) or 2 µg (bac2) baclofen. In the second experiment, the animals were injected icv with 5 µl vehicle (Cicv) or an equal volume of a solution containing 4 µmol (1333.2 µg) dipyrone (Dp icv), followed by 5 µl vehicle (bac0) or 1 µg baclofen (bac1). GE was determined 10 min after icv injection. There was no significant difference between control animals from one experiment to another concerning GR values. Baclofen at the doses of 1 and 2 µg significantly reduced mean %GR induced by iv dipyrone (Dp iv bac1 = 35.9% and Dp iv bac2 = 26.9% vs Dp iv bac0 = 51.8%). Similarly, baclofen significantly reduced the effect of dipyrone injected icv (mean %GR: Dp icv bac1 = 30.4% vs Dp icv bac0 = 54.2%). The present results suggest that dipyrone induces delayed GE through a route in the central nervous system that is blocked by the activation of GABA B receptors.
Resumo:
Gamma-irradiation (gamma-IR) is extensively used in the treatment of hormone-resistant prostate carcinoma. The objective of the present study was to investigate the effects of 60Co gamma-IR on the growth, cell cycle arrest and cell death of the human prostate cancer cell line DU 145. The viability of DU 145 cells was measured by the Trypan blue exclusion assay and the 3(4,5-dimethylthiazol-2-yl)-2,5,diphenyltetrazolium bromide test. Bromodeoxyuridine incorporation was used for the determination of cell proliferation. Cell cycle arrest and cell death were analyzed by flow cytometry. Superoxide dismutase (SOD), specifically CuZnSOD and MnSOD protein expression, after 10 Gy gamma-IR, was determined by Western immunoblotting analysis. gamma-IR treatment had a significant (P < 0.001) antiproliferative and cytotoxic effect on DU 145 cells. Both effects were time and dose dependent. Also, the dose of gamma-IR which inhibited DNA synthesis and cell proliferation by 50% was 9.7 Gy. Furthermore, gamma-IR induced cell cycle arrest in the G2/M phase and the percentage of cells in the G2/M phase was increased from 15% (control) to 49% (IR cells), with a nonsignificant induction of apoptosis. Treatment with 10 Gy gamma-IR for 24, 48, and 72 h stimulated CuZnSOD and MnSOD protein expression in a time-dependent manner, approximately by 3- to 3.5-fold. These data suggest that CuZnSOD and MnSOD enzymes may play an important role in the gamma-IR-induced changes in DU 145 cell growth, cell cycle arrest and cell death.
Resumo:
Chloride poisoning is known as having an inhibitor effect in the activity of metal catalysis. In this work in situ infrared spectroscopy (FTIR) of adsorbed carbon monoxide and x-ray photoelectron spectroscopy (XPS) were used to investigate the effect of chloride presence in the electronic metal density in the d subshell of palladium dispersed on alumina. The chloride poisoning effect was interpreted as an electronic effect since a weak back-bonded Pd-CO was formed due to the decrease in the electronic density of the d subshell of palladium, which could be also detected by the higher Pd 3d5/2 binding energy in the chloride presence. A similar poisoning effect was also observed for chloride free Pd/Al2O3 reduced at 500 ºC, and it was interpreted based on the interaction of metal with the alumina surface. The use of molybdena/alumina binary system as support, yield a contrary effect due to the metal-support interaction.
Resumo:
The use of probes, such as paramagnetic species diluted in diamagnetic materials in EPR spectroscopy, and mathematical tools such, as the Kubelka-Munk function in DRUV-VIS spectroscopy are strategies in the analysis of complex mixtures of solid materials. The results obtained here show that the solid state reaction between the complex, [VO(acac)(BMIMAPY)] [ClO4], BMIMAPY = [(bis(1-methylimidazole-2-yl)methyl)(2-(pyridyl-2-yl)ethyl) amine] and acac = acetilacetonate, with kaolinite turns possible to obtain anisotropic EPR spectrum of the complex with a reasonable level of resolution. The study by DRUV-VIS using the method of second derivative mode of the Kubelka-Munk function revealed new complex structural arrangements, a solid hitherto unknown.