2 resultados para hypersonic
em Scielo Saúde Pública - SP
On the development of an unstructured grid solver for inert and reactive high speed flow simulations
Resumo:
An unstructured grid Euler solver for reactive compressible flow applications is presented. The method is implemented in a cell centered, finite volume context for unstructured triangular grids. Three different schemes for spatial discretization are implemented and analyzed. Time march is implemented in a time-split fashion with independent integrators for the flow and chemistry equations. The capability implemented is tested for inert flows in a hypersonic inlet and for inert and reactive supersonic flows over a 2-D wedge. The results of the different schemes are compared with each other and with independent calculations using a structured grid code. The strengths and the possible weaknesses of the proposed methods are discussed.
Resumo:
Products developed at industries, institutes and research centers are expected to have high level of quality and performance, having a minimum waste, which require efficient and robust tools to numerically simulate stringent project conditions with great reliability. In this context, Computational Fluid Dynamics (CFD) plays an important role and the present work shows two numerical algorithms that are used in the CFD community to solve the Euler and Navier-Stokes equations applied to typical aerospace and aeronautical problems. Particularly, unstructured discretization of the spatial domain has gained special attention by the international community due to its ease in discretizing complex spatial domains. This work has the main objective of illustrating some advantages and disadvantages of numerical algorithms using structured and unstructured spatial discretization of the flow governing equations. Numerical methods include a finite volume formulation and the Euler and Navier-Stokes equations are applied to solve a transonic nozzle problem, a low supersonic airfoil problem and a hypersonic inlet problem. In a structured context, these problems are solved using MacCormacks implicit algorithm with Steger and Warmings flux vector splitting technique, while, in an unstructured context, Jameson and Mavriplis explicit algorithm is used. Convergence acceleration is obtained using a spatially variable time stepping procedure.