22 resultados para human osteoblast matrix
em Scielo Saúde Pública - SP
Resumo:
Bone homeostasis seems to be controlled by delicate and subtle “cross talk” between the nervous system and “osteo-neuromediators” that control bone remodeling. The purpose of this study was to evaluate the effect of interactions between neuropeptides and human bone morphogenetic protein 2 (hBMP2) on human osteoblasts. We also investigated the effects of neuropeptides and hBMP2 on gap junction intercellular communication (GJIC). Osteoblasts were treated with neuropeptide Y (NPY), substance P (SP), or hBMP2 at three concentrations. At various intervals after treatment, cell viability was measured by the MTT assay. In addition, cellular alkaline phosphatase (ALP) activity and osteocalcin were determined by colorimetric assay and radioimmunoassay, respectively. The effects of NPY, SP and hBMP on GJIC were determined by laser scanning confocal microscopy. The viability of cells treated with neuropeptides and hBMP2 increased significantly in a time-dependent manner, but was inversely associated with the concentration of the treatments. ALP activity and osteocalcin were both reduced in osteoblasts exposed to the combination of neuropeptides and hBMP2. The GJIC of osteoblasts was significantly increased by the neuropeptides and hBMP2. These results suggest that osteoblast activity is increased by neuropeptides and hBMP2 through increased GJIC. Identification of the GJIC-mediated signal transduction capable of modulating the cellular activities of bone cells represents a novel approach to studying the biology of skeletal innervation.
Resumo:
Carbon nanotubes are highly versatile materials; new applications using them are continuously being developed. Special attention is being dedicated to the possible use of multiwalled carbon nanotubes in biomaterials contacting with bone. However, carbon nanotubes are also controversial in regards to effects exerted on living organisms. Carbon nanotubes can be used to improve the tribological properties of polymer/composite materials. Ultrahigh molecular weight polyethylene (UHMWPE) is a polymer widely used in orthopedic applications that imply wear and particle generation. We describe here the response of human osteoblast-like MG63 cells after 6 days of culture in contact with artificially generated particles from both UHMWPE polymer and multiwalled carbon nanotubes (MWCNT)/UHMWPE nanocomposites. This novel composite has superior wear behavior, having thus the potential to reduce the number of revision hip arthroplasty surgeries required by wear failure of acetabular cups and diminish particle-induced osteolysis. The results of an in vitro study of viability and proliferation and interleukin-6 (IL-6) production suggest good cytocompatibility, similar to that of conventional UHMWPE (WST-1 assay results are reported as percentage of control ± SD: UHMWPE = 96.19 ± 7.92, MWCNT/UHMWPE = 97.92 ± 8.29%; total protein: control = 139.73 ± 10.78, UHMWPE = 137.07 ± 6.17, MWCNT/UHMWPE = 163.29 ± 11.81 µg/mL; IL-6: control = 90.93 ± 10.30, UHMWPE = 92.52 ± 11.02, MWCNT/UHMWPE = 108.99 ± 9.90 pg/mL). Standard cell culture conditions were considered as control. These results, especially the absence of significant elevation in the osteolysis inductor IL-6 values, reinforce the potential of this superior wear-resistant composite for future orthopedic applications, when compared to traditional UHMWPE.
Resumo:
Neuropathy and bone deformities, lifelong sequelae of leprosy that persist after treatment, result in significant impairment to patients and compromise their social rehabilitation. Phosphate-regulating gene with homologies to endopeptidase on the X chromosome (PHEX) is a Zn-metalloendopeptidase, which is abundantly expressed in osteoblasts and many other cell types, such as Schwann cells, and has been implicated in phosphate metabolism and X-linked rickets. Here, we demonstrate that Mycobacterium leprae stimulation downregulates PHEX transcription and protein expression in a human schwannoma cell line (ST88-14) and human osteoblast lineage. Modulation of PHEX expression was observed to a lesser extent in cells stimulated with other species of mycobacteria, but was not observed in cultures treated with latex beads or with the facultative intracellular bacterium Salmonella typhimurium. Direct downregulation of PHEX by M. leprae could be involved in the bone resorption observed in leprosy patients. This is the first report to describe PHEX modulation by an infectious agent.
Resumo:
The pathogenic fungus Sporothrix schenckii is the causative agent of sporotrichosis. This subcutaneous mycosis may disseminate in immunocompromised individuals and also affect several internal organs and tissues, most commonly the bone, joints and lung. Since adhesion is the first step involved with the dissemination of pathogens in the host, we have studied the interaction between S. schenckii and several extracellular matrix (ECM) proteins. The binding of two morphological phases of S. schenckii, yeast cells and conidia, to immobilized type II collagen, laminin, fibronectin, fibrinogen and thrombospondin was investigated. Poly (2-hydroxyethyl methacrylate) (poly-HEMA) was used as the negative control. Cell adhesion was assessed by ELISA with a rabbit anti-S. schenckii antiserum. The results indicate that both morphological phases of this fungus can bind significantly to type II collagen, fibronectin and laminin in comparison to the binding observed with BSA (used as blocking agent). The adhesion rate observed with the ECM proteins (type II collagen, fibronectin and laminin) was statistically significant (P<0.05) when compared to the adhesion obtained with BSA. No significant binding of conidia was observed to either fibrinogen or thrombospondin, but yeast cells did bind to the fibrinogen. Our results indicate that S. schenckii can bind to fibronectin, laminin and type II collagen and also show differences in binding capacity according to the morphological form of the fungus.
Resumo:
The human adrenal cortex, involved in adaptive responses to stress, body homeostasis and secondary sexual characters, emerges from a tightly regulated development of a zone-specific secretion pattern during fetal life. Its development during fetal life is critical for the well being of pregnancy, the initiation of delivery, and even for an adequate adaptation to extra-uterine life. As early as from the sixth week of pregnancy, the fetal adrenal gland is characterized by a highly proliferative zone at the periphery, a concentric migration accompanied by cell differentiation (cortisol secretion) and apoptosis in the central androgen-secreting fetal zone. After birth, a strong reorganization occurs in the adrenal gland so that it better fulfills the newborn's needs, with aldosterone production in the external zona glomerulosa, cortisol secretion in the zona fasciculata and androgens in the central zona reticularis. In addition to the major hormonal stimuli provided by angiotensin II and adrenocorticotropin, we have tested for some years the hypotheses that such plasticity may be under the control of the extracellular matrix. A growing number of data have been harvested during the last years, in particular about extracellular matrix expression and its putative role in the development of the human adrenal cortex. Laminin, collagen and fibronectin have been shown to play important roles not only in the plasticity of the adrenal cortex, but also in cell responsiveness to hormones, thus clarifying some of the unexplained observations that used to feed controversies.
Resumo:
Tissue transglutaminase (type II, TG2) has long been postulated to directly promote skeletal matrix calcification and play an important role in ossification. However, limited information is available on the expression, function and modulating mechanism of TG2 during osteoblast differentiation and mineralization. To address these issues, we cultured the well-established human osteosarcoma cell line SAOS-2 with osteo-inductive conditioned medium and set up three time points (culture days 4, 7, and 14) to represent different stages of SAOS-2 differentiation. Osteoblast markers, mineralization, as well as TG2 expression and activity, were then assayed in each stage. Furthermore, we inhibited TG activity with cystamine and then checked SAOS-2 differentiation and mineralization in each stage. The results showed that during the progression of osteoblast differentiation SAOS-2 cells presented significantly high levels of osteocalcin (OC) mRNA, bone morphogenetic protein-2 (BMP-2) and collagen I, significantly high alkaline phosphatase (ALP) activity, and the increased formation of calcified matrix. With the same tendency, TG2 expression and activity were up-regulated. Furthermore, inhibition of TG activity resulted in a significant decrease of OC, collagen I, and BMP-2 mRNA and of ALP activity and mineralization. This study demonstrated that TG2 is involved in osteoblast differentiation and may play a role in the initiation and regulation of the mineralization processes. Moreover, the modulating effects of TG2 on osteoblasts may be related to BMP-2.
Resumo:
Damage to cartilage causes a loss of type II collagen (Col-II) and glycosaminoglycans (GAG). To restore the original cartilage architecture, cell factors that stimulate Col-II and GAG production are needed. Insulin-like growth factor I (IGF-I) and transcription factor SOX9are essential for the synthesis of cartilage matrix, chondrocyte proliferation, and phenotype maintenance. We evaluated the combined effect of IGF-I and SOX9 transgene expression on Col-II and GAG production by cultured human articular chondrocytes. Transient transfection and cotransfection were performed using two mammalian expression plasmids (pCMV-SPORT6), one for each transgene. At day 9 post-transfection, the chondrocytes that were over-expressing IGF-I/SOX9 showed 2-fold increased mRNA expression of the Col-II gene, as well as a 57% increase in Col-II protein, whereas type I collagen expression (Col-I) was decreased by 59.3% compared with controls. The production of GAG by these cells increased significantly compared with the controls at day 9 (3.3- vs 1.8-times, an increase of almost 83%). Thus, IGF-I/SOX9 cotransfected chondrocytes may be useful for cell-based articular cartilage therapies.
Resumo:
Optical and electron microscopical evidences of focal matrix degradation were frequently seen in liver sections of periportal fibrosis caused by schistosomiasis mansoni in man. The material came from 14 wedge hepatic biopsies taken from patients with chronic advanced hepatosplenic disease and undergoing operations for the relief of portal hypertension. Besides the presence of focal areas of rarefaction, fragmentation and dispersion of collagen fibers, the enlarged portal spaces also showed hyperplasia of elastic tissue and disarray of smooth muscle fibers following destruction of portal vein branches. Eggs were scanty in the tissue sections, and matrix degradation probably represented involuting changes related to the progressive diminution of parasite-related aggression, which occurs spontaneously with age or after cure by chemotherapy. The changes indicative of matrix degradation now described are probably the basic morphological counterpart of periportal fibrosis involution currently being documented by ultrasonography in hepatosplenic patients submitted to curative chemotherapy.
Resumo:
In recent years, one of the most significant progress in the understanding of liver diseases was the demonstration that liver fibrosis is a dynamic process resulting from a balance between synthesis and degradation of several matrix components, collagen in particular. Thus, fibrosis has been found to be a very early event during liver diseases, be it of toxic, viral or parasitic origin, and to be spontaneously reversible, either partially or totally. In liver fibrosis cell matrix interactions are dependent on the existence of the many factors (sometimes acting in combination) which produce the same events at the cellular and molecular levels. These events are: (i) the recruitment of fiber-producing cells, (ii) their proliferation, (iii) the secretion of matrix constituents of the extracellular matrix, and (iv) the remodeling and degradation of the newly formed matrix. All these events represent, at least in principle, a target for a therapeutic intervention aimed at influencing the experimentally induced hepatic fibrosis. In this context, hepatosplenic schistosomiasis is of particular interest, being an immune cell-mediated granulomatous disease and a model of liver fibrosis allowing extensive studies in human and animals as well as providing original in vitro models.
Resumo:
Anti-idiotypic (anti-Id) T cells from schistosomiasis patients or former patients proliferate upon exposure to polyclonal or monoclonal anti-soluble egg antigen (SEA) antibodies. Chloroquine does not inhibit, the response, which is induced by F(ab')2 (but not soluble Fab) fragments of these antibodies. Purified T cells from former patients require macrophages or exogenous IL-1 to respond to anti-SEA Ids and can respond to matrix-bound Fab fragments in the presence of IL-1. These anti-Id T cells recognize the Ids directly. Chronic schistosomiasis patients immunoregulate the production of a non-IL-2 lymphokine that stimulates IL-2 receptor expression on resting T cells. This regulation is reversed upon chemotherapeutic cure.
Resumo:
Eosinophils preferentially accumulate at sites of chronic allergic diseases such as bronchial asthma. The mechanisms by which selective eosinophil migration occurs are not fully understood. However, interactions of cell-surface adhesion molecules on the eosinophil with molecular counterligands on endothelial and epithelial cells, and on extracellular matrix proteins, are likely to be critical during the recruitment process. One possible mechanism for selective eosinophil recruitment involves the alpha4beta 1 (VLA-4) integrin which is not expressed on neutrophils. Correlations have been found between infiltration of eosinophils and endothelial expression of VCAM-1, the ligand for VLA-4, in the lungs of asthmatic individuals as well as in late phase reactions in the lungs, nose and skin. Epithelial and endothelial cells respond to the Th2-type cytokines IL-4 and IL-13 with selective de novo expression of VCAM-1, consistent with the possible role of VCAM-1/VLA-4 interactions in eosinophil influx during allergic inflammation. Both beta 1 and beta 2 integrins on eosinophils exist in a state of partial activation. For example, eosinophils can be maximally activated for adhesion to VCAM-1 or fibronectin after exposure to beta 1 integrin-activating antibodies or divalent cations, conditions that do not necessarily affect the total cell surface expression of beta 1 integrins. In contrast, cytokines like IL-5 prevent beta 1 integrin activation while promoting beta 2 integrin function. Furthermore, ligation of integrins can regulate the effector functions of the cell. For example, eosinophil adhesion via beta 1 and/or beta 2 integrins has been shown to alter a variety of functional responses including degranulation and apoptosis. Thus, integrins appear to be important in mediating eosinophil migration and activation in allergic inflammation. Strategies that interfere with these processes may prove to be useful for treatment of allergic diseases.
Resumo:
Different common drugs (Meloxicam, Tenoxicam and Piroxicam, and sodium alendronate) were tested both experimental and theoretically as inhibitors of interstitial human collagenase, also known as matrix metalloproteinase 1 (MMP-1). The in vitro collagenase activity, alone and in the presence of inhibitors, was quantified by the reaction with a fluorescent synthetic substrate and measuring the change of emission. Collagenase-inhibitor interaction was studied theoretically by computational calculations. Three among the four tested substances showed moderate inhibiting activity against the human collagenase.
Resumo:
It has been estimated that infection with the enteric protozoan parasite Entamoeba histolytica kills more than 50,000 people a year. Central to the pathogenesis of this organism is its ability to directly lyse host cells and cause tissue destruction. Amebic lesions show evidence of cell lysis, tissue necrosis, and damage to the extracellular matrix. The specific molecular mechanisms by which these events are initiated, transmitted, and effected are just beginning to be uncovered. In this article we review what is known about host cell adherence and contact-dependent cytolysis. We cover the involvement of the actin cytoskeleton and small GTP-binding proteins of the p21rho-family in the process of cell killing and phagocytosis, and also look at how amebic interactions with molecules of the extracellular matrix contribute to its cytopathic effects.
Resumo:
Corneal transparency is attributed to the regular spacing and diameter of collagen fibrils, and proteoglycans may play a role in fibrillogenesis and matrix assembly. Corneal scar tissue is opaque and this opacity is explained by decreased ultrastructural order that may be related to proteoglycan composition. Thus, the objectives of the present study were to characterize the proteoglycans synthesized by human corneal explants and to investigate the effect of mechanical epithelial debridement. Human corneas unsuitable for transplants were immersed in F-12 culture medium and maintained under tissue culture conditions. The proteoglycans synthesized in 24 h were labeled metabolically by the addition of 35S-sulfate to the medium. These compounds were extracted by 4 M GuHCl and identified by a combination of agarose gel electrophoresis, enzymatic degradation with protease and mucopolysaccharidases, and immunoblotting. Decorin was identified as the main dermatan sulfate proteoglycan and keratan sulfate proteoglycans were also prominent components. When the glycosaminoglycan side chains were analyzed, only keratan sulfate and dermatan sulfate were detected (~50% each). Nevertheless, when these compounds were 35S-labeled metabolically, the label in dermatan sulfate was greater than in keratan sulfate, suggesting a lower synthesis rate for keratan sulfate. 35S-Heparan sulfate also appeared. The removal of the epithelial layer caused a decrease in heparan sulfate labeling and induced the synthesis of dermatan sulfate by the stroma. The increased deposit of dermatan sulfate proteoglycans in the stroma suggests a functional relationship between epithelium and stroma that could be related to the corneal opacity that may appear after epithelial cell debridement.