124 resultados para heart-rate
em Scielo Saúde Pública - SP
Resumo:
We administered arecoline to rats, with experimentally induced chagasic myocarditis, in order to study the sinus node sensitivity to a muscarinic agonist. Sixteen month old rats were inoculated with 200,000 T. cruzi parasites ("Y" strain). Between days 18 and 21 (acute stage), 8 infected rats and 8 age-matched controls received intravenous arecoline as a bolus injection at the following doses: 5.0, 10.0, 20.0, 40.0, and 80.0 mug/kg. Heart rate was recorded before, during and after each dose of arecoline. The remaining 8 infected animals and 8 controls were subjected to the same experimental procedure during the subacute stage, i.e., days 60 to 70 after inoculation. The baseline heart rate, of the animals studied during the acute stage (349 ± 68 bpm, mean ± SD), was higher than that of the controls (250 ± 50 bpm, p < 0.005). The heart rate changes were expressed as percentage changes over baseline values. A dose-response curve was constructed for each group of animals. Log scales were used to plot the systematically doubled doses of arecoline and the induced-heart rate changes. The slope of the regression line for the acutely infected animals (r = - 0.99, b =1.78) was not different from that for the control animals (r = - 0.97, b = 1.61). The infected animals studied during the subacute stage (r = - 0.99, b = 1.81) were also not different from the age-matched controls (r = - 0.99, b = 1.26, NS). Consequently, our results show no pharmacological evidence of postjunctional hypersensitivity to the muscarinic agonist arecoline. Therefore, these results indirectly suggest that the postganglionic parasympathetic innervation, of the sinus node of rats with autopsy proved chagasic myocarditis, is not irreversibly damaged by Trypanosoma cruzi.
Resumo:
We have studied the cardiac chronotropic responses to the Valsalva maneuver and to dynamic exercise of twenty chronic chagasic patients with normal left ventricular function and no segmental wall abnormalities by two-dimensional echocardiogram. The absolute increase in heart rate of the patients (Δ = 21.5 ± 10 bpm, M±SD) during the maneuver was significantly diminished when compared to controls (Δ = 31.30 ± 70, M±SD, p = 0.03). The minimum heart rate (58.24 ± 8.90 vs. 62.80 ± 10, p = 0.68) and the absolute decrease in heart rate at the end of the maneuver (Δ = 38.30 ± 13 vs. Δ = 31.47 ± 17, p = 0.10) were not different from controls. The initial heart rate acceleration during dynamic exercise (Δ = 12 ± 7.55 vs. Δ = 19 ± 7.27, M±SD, p = 0.01) was also diminished, but the heart rate recovery during the first ten seconds was more prominent in the sero-positive patients (Median: 14, Interquartile range: (9.75-17.50 vs. 5(0-8.75, p = 0.001). The serum levels of muscarinic cardiac auto-antibodies were significantly higher in the chagasic patients (Median: 34.58, Interquartile Range: 17-46.5, Optical Density) than in controls (Median: 0, Interquartile Range: 0-22.25, p = 0.001) and correlated significantly and directly (r = 0.68, p = 0.002) with early heart rate recovery during dynamic exercise. The results of this investigation indirectly suggest that, the cardiac muscarinic auto-antibodies may have positive agonist effects on parasympathetic heart rate control of chagasic patients.
Resumo:
The cardiac effects of experimentally induced myocarditis, when the parasite is obtained from mouse blood, are well known. However, the consequences of the infection when the parasites are obtained from bug faeces are less well defined. In the present investigation, we have used the "Y" strain of Trypanosoma cruzi, which was maintained in Rhodnius prolixus by repeated passages in mice. The faeces of 30 infected bugs were collected, the number of parasites counted and 4,000 parasites inoculated by the conjunctival route in 60 rats. Twenty-nine other rats received faeces from noninfected bugs (sham-inoculated controls) and 40 were used as normal controls. The heart rate of the three groups of animals was recorded under general anesthesia with ether. The heart rate, at day 0 pre-inoculation, was similar in the three groups of animals (Controls: 379 ± 27 beats/min Mean ± SD; Sham-inoculated: 366 ± 31; Infected: 351 ± 29) (p> 0.05). In the infected animals, the mean heart rate began to increase significantly by day 12 following infection (375 ± 31), reaching the highest values between days 18 (390 ± 33) and 21 (403 ± 33) and returned to baseline by day 30 (359 ± 28) (p< 0.05). The heart rate changes were statistically different from those observed in the sham-inoculated controls and in the control animals. Therefore, these heart rate changes were provoked by the Trypanosoma cruzi-induced infection. Thus, it appears that irrespective of the source of the parasite and route of inoculation Trypanosoma cruziacute infection provokes a transient sinus tachycardia.
Resumo:
PURPOSE: To assess the presence and the prevalence of arrhythmias and the variability of the heart rate in the medium-term postoperative period following the maze procedure for chronic atrial fibrillation (AF). METHODS: Seventeen patients with a mean age of 51.7±12.9 years, who previously underwent the maze procedure without cryoablation for chronic atrial fibrillation, were evaluated with the 24 hour electrocardiogram (ECG) - Holter monitoring from the 6th month after the operation. Valvular and coronary procedures were concomitantly performed. RESULTS: The mean heart rate during Holter monitoring was 82±8bpm; the maximal heart rate was 126 ± 23bpm and the minimal heart rate 57±7bpm. Sinus rhythm was found in 10 (59%) patients and atrial rhythm was found in 7 (41%). Supraventricular extrasystoles had a rate of 2.3±5.5% of the total number of heartbeats and occurred in 16 (94%) patients. Six (35%) patients showed nonsustained atrial tachycardia. Ventricular extrasystoles, with a rate of 0.8±0.5% of the total heartbeats, occurred in 14 (82%) patients. The chronotropic competence was normal in 9 (53%) patients and attenuated in 8 (47%). The atrioventricular conduction (AV) was unchanged in 13 (76%) patients and there were 4 (24%) cases of first degree atrioventricular block (AVB). CONCLUSION: After the maze procedure, the values for the mean heart rate, AV conduction and chronotropic competence approach the normal range, although some cases show attenuation of the chronotropic response, first degree AV block or benign arrhythmias.
Resumo:
Background: When performing the Valsalva maneuver (VM), adults and preadolescents produce the same expiratory resistance values. Objective: To analyze heart rate (HR) in preadolescents performing VM, and propose a new method for selecting expiratory resistance. Method: The maximal expiratory pressure (MEP) was measured in 45 sedentary children aged 9-12 years who subsequently performed VM for 20 s using an expiratory pressure of 60%, 70%, or 80% of MEP. HR was measured before, during, and after VM. These procedures were repeated 30 days later, and the data collected in the sessions (E1, E2) were analyzed and compared in periods before, during (0-10 and 10-20 s), and after VM using nonparametric tests. Results: All 45 participants adequately performed VM in E1 and E2 at 60% of MEP. However, only 38 (84.4%) and 25 (55.5%) of the participants performed the maneuver at 70% and 80% of MEP, respectively. The HR delta measured during 0-10 s and 10-20 s significantly increased as the expiratory effort increased, indicating an effective cardiac autonomic response during VM. However, our findings suggest the VM should not be performed at these intensities. Conclusion: HR increased with all effort intensities tested during VM. However, 60% of MEP was the only level of expiratory resistance that all participants could use to perform VM. Therefore, 60% of MEP may be the optimal expiratory resistance that should be used in clinical practice.
Resumo:
Background: Heart rate variability (HRV) is a marker of autonomic dysfunction severity. The effects of physical training on HRV indexes in Chagas heart disease (CHD) are not well established. Objective: To evaluate the changes in HRV indexes in response to physical training in CHD. Methods: Patients with CHD and left ventricular (LV) dysfunction, physically inactive, were randomized either to the intervention (IG, N = 18) or control group (CG, N = 19). The IG participated in a 12-week exercise program consisting of 3 sessions/week. Results: Mean age was 49.5 ± 8 years, 59% males, mean LVEF was 36.3 ± 7.8%. Baseline HRV indexes were similar between groups. From baseline to follow-up, total power (TP): 1653 (IQ 625 - 3418) to 2794 (1617 - 4452) ms, p = 0.02) and very low frequency power: 586 (290 - 1565) to 815 (610 - 1425) ms, p = 0.047) increased in the IG, but not in the CG. The delta (post - pre) HRV indexes were similar: SDNN 11.5 ± 30.0 vs. 3.7 ± 25.1 ms. p = 0.10; rMSSD 2 (6 - 17) vs. 1 (21 - 9) ms. p = 0.43; TP 943 (731 - 3130) vs. 1780 (921 - 2743) Hz. p = 0.46; low frequency power (LFP) 1.0 (150 - 197) vs. 60 (111 - 146) Hz. p = 0.85; except for high frequency power, which tended to increase in the IG: 42 (133 - 92) vs. 79 (61 - 328) Hz. p = 0.08). Conclusion: In the studied population, the variation of HRV indexes was similar between the active and inactive groups. Clinical improvement with physical activity seems to be independent from autonomic dysfunction markers in CHD.
Resumo:
Background: Ivabradine is a novel specific heart rate (HR)-lowering agent that improves event-free survival in patients with heart failure (HF). Objectives: We aimed to evaluate the effect of ivabradine on time domain indices of heart rate variability (HRV) in patients with HF. Methods: Forty-eight patients with compensated HF of nonischemic origin were included. Ivabradine treatment was initiated according to the latest HF guidelines. For HRV analysis, 24-h Holter recording was obtained from each patient before and after 8 weeks of treatment with ivabradine. Results: The mean RR interval, standard deviation of all normal to normal RR intervals (SDNN), the standard deviation of 5-min mean RR intervals (SDANN), the mean of the standard deviation of all normal-to-normal RR intervals for all 5-min segments (SDNN index), the percentage of successive normal RR intervals exceeding 50 ms (pNN50), and the square root of the mean of the squares of the differences between successive normal to normal RR intervals (RMSSD) were low at baseline before treatment with ivabradine. After 8 weeks of treatment with ivabradine, the mean HR (83.6 ± 8.0 and 64.6 ± 5.8, p < 0.0001), mean RR interval (713 ± 74 and 943 ± 101 ms, p < 0.0001), SDNN (56.2 ± 15.7 and 87.9 ± 19.4 ms, p < 0.0001), SDANN (49.5 ± 14.7 and 76.4 ± 19.5 ms, p < 0.0001), SDNN index (24.7 ± 8.8 and 38.3 ± 13.1 ms, p < 0.0001), pNN50 (2.4 ± 1.6 and 3.2 ± 2.2 %, p < 0.0001), and RMSSD (13.5 ± 4.6 and 17.8 ± 5.4 ms, p < 0.0001) substantially improved, which sustained during both when awake and while asleep. Conclusion: Our findings suggest that treatment with ivabradine improves HRV in nonischemic patients with HF.
Resumo:
Background:Autonomic dysfunction (AD) is highly prevalent in hemodialysis (HD) patients and has been implicated in their increased risk of cardiovascular mortality.Objective:To correlate heart rate variability (HRV) during exercise treadmill test (ETT) with the values obtained when measuring functional aerobic impairment (FAI) in HD patients and controls.Methods:Cross-sectional study involving HD patients and a control group. Clinical examination, blood sampling, transthoracic echocardiogram, 24-hour Holter, and ETT were performed. A symptom-limited ramp treadmill protocol with active recovery was employed. Heart rate variability was evaluated in time domain at exercise and recovery periods.Results:Forty-one HD patients and 41 controls concluded the study. HD patients had higher FAI and lower HRV than controls (p<0.001 for both). A correlation was found between exercise HRV (SDNN) and FAI in both groups. This association was independent of age, sex, smoking, body mass index, diabetes, and clonidine or beta-blocker use, but not of hemoglobin levels.Conclusion:No association was found between FAI and HRV on 24-hour Holter or at the recovery period of ETT. Of note, exercise HRV was inversely correlated with FAI in HD patients and controls. (Arq Bras Cardiol. 2015; [online]. ahead print, PP.0-0)
Resumo:
Background:Diabetes affects approximately 250 million people in the world. Cardiovascular autonomic neuropathy is a common complication of diabetes that leads to severe postural hypotension, exercise intolerance, and increased incidence of silent myocardial infarction.Objective:To determine the variability of heart rate (HR) and systolic blood pressure (SBP) in recently diagnosed diabetic patients.Methods:The study included 30 patients with a diagnosis of type 2 diabetes of less than 2 years and 30 healthy controls. We used a Finapres® device to measure during five minutes beat-to-beat HR and blood pressure in three experimental conditions: supine position, standing position, and rhythmic breathing at 0.1 Hz. The results were analyzed in the time and frequency domains.Results:In the HR analysis, statistically significant differences were found in the time domain, specifically on short-term values such as standard deviation of NN intervals (SDNN), root mean square of successive differences (RMSSD), and number of pairs of successive NNs that differ by more than 50 ms (pNN50). In the BP analysis, there were no significant differences, but there was a sympathetic dominance in all three conditions. The baroreflex sensitivity (BRS) decreased in patients with early diabetes compared with healthy subjects during the standing maneuver.Conclusions:There is a decrease in HR variability in patients with early type 2 diabetes. No changes were observed in the BP analysis in the supine position, but there were changes in BRS with the standing maneuver, probably due to sympathetic hyperactivity.
Resumo:
PURPOSE: To determine fetal heart rate (FHR) responses to maternal resistance exercise for the upper and lower body at two different volumes, and after 25 minutes post-exercise.METHODS: Ten pregnant women (22-24 weeks gestation, 25.2±4.4 years of age, 69.8±9.5 kg, 161.6±5.2 cm tall) performed, at 22-24, 28-32 and 34-36 weeks, the following experimental sessions: Session 1 was a familiarization with the equipment and the determination of one estimated maximum repetition. For sessions 2, 3, 4 and 5,FHR was determined during the execution of resistance exercise on bilateral leg extension and pec-deck fly machines, with 1 and 3 sets of 15 repetitions; 50% of the weight load and an estimated repetition maximum. FHR was assessed with a portable digital cardiotocograph. Results were analyzed using Student's ttest, ANOVA with repeated measures and Bonferroni (α=0.05; SPSS 17.0).RESULTS: FHR showed no significant differences between the exercises at 22-24 weeks (bilateral leg extension=143.8±9.4 bpm, pec-deck fly=140.2±10.2 bpm, p=0.34), 28-30 weeks (bilateral leg extension=138.4±12.2 bpm, pec-deck fly=137.6±14.0 bpm, p=0.75) and 34-36 weeks (bilateral leg extension=135.7±5.8 bpm, pec-deck fly=139.7±13.3 bpm, p=0.38), between the volumes(bilateral leg extension at 22-24 weeks: p=0.36, at 28-30 weeks: p=0.19 and at 34-36 weeks: p=0.87; pec-deck fly at 22-24 weeks: p=0.43, at 28-30 weeks: p=0.61 and at 34-36 weeks: p=0.49) and after 25 minutes post-exercise.CONCLUSION: Results of this pilot study would suggest that maternal resistance exercise is safe for the fetus.
Resumo:
To determine the possible relationship between left ventricular dilatation and heart rate changes provoked by the Valsalva maneuver (Valsalva ratio), we studied 9 patients with isolated chronic aortic insufficiency. Left ventricular systolic function was assessed by two-dimensional echocardiography and cardiac catheterization. All patients were asymptomatic (functional class I of the New York Heart Association). The left ventricular internal diameters and volumes were significantly increased in all patients. The asymptomatic patients had either normal or slightly depressed ejection fraction (EF>0.40). The Valsalva ratio of these asymptomatic patients showed no significant correlation with the left ventricular volumes or with the left ventricular ejection fraction. In other words, parasympathetic heart rate control, as expressed by the Valsalva ratio, was normal in the asymptomatic patients with left ventricular dilatation and preserved left ventricular ejection fraction. Therefore, left ventricular dilatation may not be the major mechanism responsible for the abnormal parasympathetic heart rate control of patients with acquired heart disease
Resumo:
Autonomic neuropathy is a frequent complication of diabetes associated with higher morbidity and mortality in symptomatic patients, possibly because it affects autonomic regulation of the sinus node, reducing heart rate (HR) variability which predisposes to fatal arrhythmias. We evaluated the time course of arterial pressure and HR and indirectly of autonomic function (by evaluation of mean arterial pressure (MAP) variability) in rats (164.5 ± 1.7 g) 7, 14, 30 and 120 days after streptozotocin (STZ) injection, treated with insulin, using measurements of arterial pressure, HR and MAP variability. HR variability was evaluated by the standard deviation of RR intervals (SDNN) and root mean square of successive difference of RR intervals (RMSSD). MAP variability was evaluated by the standard deviation of the mean of MAP and by 4 indices (P1, P2, P3 and MN) derived from the three-dimensional return map constructed by plotting MAPn x [(MAPn+1) - (MAPn)] x density. The indices represent the maximum concentration of points (P1), the longitudinal axis (P2), and the transversal axis (P3) and MN represents P1 x P2 x P3 x 10-3. STZ induced increased urinary glucose in diabetic (D) rats compared to controls (C). Seven days after STZ, diabetes reduced resting HR from 380.6 ± 12.9 to 319.2 ± 19.8 bpm, increased HR variability, as demonstrated by increased SDNN, from 11.77 ± 1.67 to 19.87 ± 2.60 ms, did not change MAP, and reduced P1 from 61.0 ± 5.3 to 51.5 ± 1.8 arbitrary units (AU), P2 from 41.3 ± 0.3 to 29.0 ± 1.8 AU, and MN from 171.1 ± 30.2 to 77.2 ± 9.6 AU of MAP. These indices, as well as HR and MAP, were similar for D and C animals 14, 30 and 120 days after STZ. Seven-day rats showed a negative correlation of urinary glucose with resting HR (r = -0.76, P = 0.03) as well as with the MN index (r = -0.83, P = 0.01). We conclude that rats with short-term diabetes mellitus induced by STZ presented modified autonomic control of HR and MAP which was reversible. The metabolic control may influence these results, suggesting that insulin treatment and a better metabolic control in this model may modify arterial pressure, HR and MAP variability
Resumo:
The present article contains a brief review on the role of vasopressinergic projections to the nucleus tractus solitarii in the genesis of reflex bradycardia and in the modulation of heart rate control during exercise. The effects of vasopressin on exercise tachycardia are discussed on the basis of both the endogenous peptide content changes and the heart rate response changes observed during running in sedentary and trained rats. Dynamic exercise caused a specific vasopressin content increase in dorsal and ventral brainstem areas. In accordance, rats pretreated with the peptide or the V1 blocker into the nucleus tractus solitarii showed a significant potentiation or a marked blunting of the exercise tachycardia, respectively, without any change in the pressure response to exercise. It is proposed that the long-descending vasopressinergic pathway to the nucleus tractus solitarii serves as one link between the two main neural controllers of circulation, i.e., the central command and feedback control mechanisms driven by the peripheral receptors. Therefore, vasopressinergic input could contribute to the adjustment of heart rate response (and cardiac output) to the circulatory demand during exercise.
Resumo:
To evaluate the effect of exercise intensity on post-exercise cardiovascular responses, 12 young normotensive subjects performed in a randomized order three cycle ergometer exercise bouts of 45 min at 30, 50 and 80% of VO2peak, and 12 subjects rested for 45 min in a non-exercise control trial. Blood pressure (BP) and heart rate (HR) were measured for 20 min prior to exercise (baseline) and at intervals of 5 to 30 (R5-30), 35 to 60 (R35-60) and 65 to 90 (R65-90) min after exercise. Systolic, mean, and diastolic BP after exercise were significantly lower than baseline, and there was no difference between the three exercise intensities. After exercise at 30% of VO2peak, HR was significantly decreased at R35-60 and R65-90. In contrast, after exercise at 50 and 80% of VO2peak, HR was significantly increased at R5-30 and R35-60, respectively. Exercise at 30% of VO2peak significantly decreased rate pressure (RP) product (RP = HR x systolic BP) during the entire recovery period (baseline = 7930 ± 314 vs R5-30 = 7150 ± 326, R35-60 = 6794 ± 349, and R65-90 = 6628 ± 311, P<0.05), while exercise at 50% of VO2peak caused no change, and exercise at 80% of VO2peak produced a significant increase at R5-30 (7468 ± 267 vs 9818 ± 366, P<0.05) and no change at R35-60 or R65-90. Cardiovascular responses were not altered during the control trial. In conclusion, varying exercise intensity from 30 to 80% of VO2peak in young normotensive humans did not influence the magnitude of post-exercise hypotension. However, in contrast to exercise at 50 and 80% of VO2peak, exercise at 30% of VO2peak decreased post-exercise HR and RP.