35 resultados para grazing rotation

em Scielo Saúde Pública - SP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies of plant responses to defoliation are important to develop pasture management strategies. The objective of this study was to evaluate the population density of basal, aerial and reproductive tillers, tiller appearance and mortality rates, forage accumulation and sward structure in Marandu grass pastures under different grazing intensities. The experimental period was from January to June 2006, divided in three seasons: summer, autumn and winter. The pastures were continuously grazed using variable stocking rates. The grazing intensities corresponded to 15, 30 and 45 cm of sward height. The experiment was arranged in a complete randomized block design with three treatments and two replicates. The sward heights were measured twice a week. The response variables were: forage accumulation, forage mass and its morphological components; and population densities of basal (TPDb), aerial (TPDa) and reproductive (TPDr) tillers. The highest TPDb (P > 0.05) was recorded for the shortest sward pasture, and the highest TPDr (P<0.05) for the tallest sward pasture. Swards showed a tiller size/density compensation mechanism and, consequently, the forage accumulation was similar (P > 0.05) among the grazing intensities. Pasture with a sward height of 35 cm had 94% of sun light interception. The highest variations in forage accumulation and sward structure were more influenced by seasonal differences than by grazing intensities. Pastures of Marandu grass showed large flexibility in grazing management, which allowed it to be maintained at sward heights between 15 and 35 cm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to evaluate split nitrogen (N) fertilization of maize applied in band at sowing and top dressing with and without crop rotation, under no-till. The experiment was conducted with six N rates at sowing (0, 20, 30, 40, 50 and 60 kg ha-1) combined with three rates in top dressing (40, 70, 100 kg ha-1) and two management systems: after five cropping sequences of maize and crop rotation (maize + soybean + oat + soybean + corn) in a randomized block design with four replications. The crop rotation system increased yield in approximately 7% in relation to the area without rotation. The split of nitrogen fertilization, in rates above 39 and 54 kg ha-1 at sowing and 70 and 40 kg ha-1 in top dressing, resulted in yield higher than that obtained with the application of 100 kg ha-1 in top dressing. Grain yield was higher with the rates 50 and 70 kg ha-1 of N compared with that obtained with 20 and 100 kg ha-1 at sowing and top dressing, respectively. The rate 70 kg ha-1 of N resulted in the highest yield at the lowest cost compared with the revenues and costs incurred with the rates 40 and 100 kg ha-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pasture productivity can drop due to soil compaction caused by animal trampling. Physical and mechanical alterations are therefore extremely important indicators for pasture management. The objective of this research was to: draw and evaluate the Mohr failure line of a Red Yellow Latossol under different pasture cycles and natural forest; calculate apparent cohesion; observe possible physical alterations in this soil; and propose a correction factor for stocking rates based on shear strength properties. This study was conducted between March/2006 and March/2007 on the Experimental Farm of Fundação de Ensino Superior de Passos, in Passos, state of Minas Gerais. The total study area covered 6 ha, of which 2 ha were irrigated pasture, 2 ha non-irrigated pasture and 2 ha natural forest. Brachiaria brizantha cv. MG-5 Vitória was used as forage plant. The pasture area was divided into paddocks. The Mohr failure line of samples of a Red Yellow Latossol under irrigated pasture equilibrated at a tension of water content of 6 kPa indicated higher shear strength than under non-irrigated pasture. The shear strength under irrigated pasture and natural forest was higher than under non-irrigated pasture. At a tension of water content of 33 kPa no difference was found in shear strength between management and use. Possible changes in soil structure were caused by apparent cohesion. The values of the correction factor were close to 1, which may indicate a possible soil compaction in prolonged periods of management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil physical quality is essential to global sustainability of agroecosystems, once it is related to processes that are essential to agricultural crop development. This study aimed to evaluate physical attributes of a Yellow Latossol under different management systems in the savanna area in the state of Piaui. This study was developed in Uruçuí southwest of the state of Piauí. Three systems of soil management were studied: an area under conventional tillage (CT) with disk plowi and heavy harrow and soybean crop; an area under no-tillage with soybean-maize rotation and millet as cover crop (NT + M); two areas under Integrated Crop-Livestock System, with five-month pasture grazing and soybean cultivation and then continuous pasture grazing (ICL + S and ICL + P, respectively). Also, an area under Native Forest (NF) was studied. The soil depths studied were 0.00-0.05, 0.05-0.10 and 0.10-0.20 m. Soil bulk density, as well as porosity and stability of soil aggregates were analyzed as physical attributes. Anthropic action has changed the soil physical attributes, in depth, in most systems studied, in comparison to NF. In the 0.00 to 0.05 m depth, ICL + P showed higher soil bulk density value. As to macroporosity, there was no difference between the management systems studied and NF. The management systems studied changed the soil structure, having, as a result, a small proportion of soil in great aggregate classes (MWD). Converting native forest into agricultural production systems changes the soil physical quality. The Integrated Crop-Livestock System did not promote the improvement in soil physical quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil organic matter can be analyzed on the basis of the different fractions. Changes in the levels of organic matter, caused by land use, can be better understood by alterations in the different compartments. The aim of this study was to evaluate the effect of different management systems on the labile and stable organic matter of a dystrophic Red Latosol (Oxisol). The following properties were determined: total organic C and total N (TOC and TN), particulate organic C and particulate N (POC and PN), organic C and N mineral-associated (MOC and NM) and particulate organic C associated with aggregate classes (POCA). Eight treatments were used: seven with soil management systems and one with native Cerrado as a reference. The experiment was designed to study the dynamics of systems of tillage and crop rotation, alternating in time and space. The experimental design was a randomized block design with three replications. The soil samples were collected from five depths: 0-5, 5-10, 10-20, 20-30 and 30-40 cm. Changes in organic C by land use occurred mainly in the fraction of particulate organic matter (> 53 mm). Proper management of grazing promoted increased levels of particulate organic matter by association with larger aggregates (2-8 mm), demonstrating the importance of the formation of this aggregate class for C protection in pasture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil organic matter (SOM) plays a crucial role in soil quality and can act as an atmospheric C-CO2 sink under conservationist management systems. This study aimed to evaluate the long-term effects (19 years) of tillage (CT-conventional tillage and NT-no tillage) and crop rotations (R0-monoculture system, R1-winter crop rotation, and R2- intensive crop rotation) on total, particulate and mineral-associated organic carbon (C) stocks of an originally degraded Red Oxisol in Cruz Alta, RS, Southern Brazil. The climate is humid subtropical Cfa 2a (Köppen classification), the mean annual precipitation 1,774 mm and mean annual temperature 19.2 ºC. The plots were divided into four segments, of which each was sampled in the layers 0-0.05, 0.05-0.10, 0.10-0.20, and 0.20-0.30 m. Sampling was performed manually by opening small trenches. The SOM pools were determined by physical fractionation. Soil C stocks had a linear relationship with annual crop C inputs, regardless of the tillage systems. Thus, soil disturbance had a minor effect on SOM turnover. In the 0-0.30 m layer, soil C sequestration ranged from 0 to 0.51 Mg ha-1 yr-1, using the CT R0 treatment as base-line; crop rotation systems had more influence on soil stock C than tillage systems. The mean C sequestration rate of the cropping systems was 0.13 Mg ha-1 yr-1 higher in NT than CT. This result was associated to the higher C input by crops due to the improvement in soil quality under long-term no-tillage. The particulate C fraction was a sensitive indicator of soil management quality, while mineral-associated organic C was the main pool of atmospheric C fixed in this clayey Oxisol. The C retention in this stable SOM fraction accounts for 81 and 89 % of total C sequestration in the treatments NT R1 and NT R2, respectively, in relation to the same cropping systems under CT. The highest C management index was observed in NT R2, confirming the capacity of this soil management practice to improve the soil C stock qualitatively in relation to CT R0. The results highlighted the diversification of crop rotation with cover crops as a crucial strategy for atmospheric C-CO2 sequestration and SOM quality improvement in highly weathered subtropical Oxisols.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil C-CO2 emissions are sensitive indicators of management system impacts on soil organic matter (SOM). The main soil C-CO2 sources at the soil-plant interface are the decomposition of crop residues, SOM turnover, and respiration of roots and soil biota. The objectives of this study were to evaluate the impacts of tillage and cropping systems on long-term soil C-CO2 emissions and their relationship with carbon (C) mineralization of crop residues. A long-term experiment was conducted in a Red Oxisol in Cruz Alta, RS, Brazil, with subtropical climate Cfa (Köppen classification), mean annual precipitation of 1,774 mm and mean annual temperature of 19.2 ºC. Treatments consisted of two tillage systems: (a) conventional tillage (CT) and (b) no tillage (NT) in combination with three cropping systems: (a) R0- monoculture system (soybean/wheat), (b) R1- winter crop rotation (soybean/wheat/soybean/black oat), and (c) R2- intensive crop rotation (soybean/ black oat/soybean/black oat + common vetch/maize/oilseed radish/wheat). The soil C-CO2 efflux was measured every 14 days for two years (48 measurements), by trapping the CO2 in an alkaline solution. The soil gravimetric moisture in the 0-0.05 m layer was determined concomitantly with the C-CO2 efflux measurements. The crop residue C mineralization was evaluated with the mesh-bag method, with sampling 14, 28, 56, 84, 112, and 140 days after the beginning of the evaluation period for C measurements. Four C conservation indexes were used to assess the relation between C-CO2 efflux and soil C stock and its compartments. The crop residue C mineralization fit an exponential model in time. For black oat, wheat and maize residues, C mineralization was higher in CT than NT, while for soybean it was similar. Soil moisture was higher in NT than CT, mainly in the second year of evaluation. There was no difference in tillage systems for annual average C-CO2 emissions, but in some individual evaluations, differences between tillage systems were noticed for C-CO2 evolution. Soil C-CO2 effluxes followed a bi-modal pattern, with peaks in October/November and February/March. The highest emission was recorded in the summer and the lowest in the winter. The C-CO2 effluxes were weakly correlated to air temperature and not correlated to soil moisture. Based on the soil C conservation indexes investigated, NT associated to intensive crop rotation was more C conserving than CT with monoculture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil compaction can be minimized either mechanically or biologically, using plant species with vigorous root systems. An experiment was carried out with soybean (Glycine max) in rotation with triticale (X Triticosecale) and sunflower (Helianthus annuus) in fall-winter associated with pearl millet (Pennisetum glaucum), grain sorghum (Sorghum bicolor) or sunn hemp (Crotalaria juncea) in spring. Crop rotation under no-till was compared with mechanical chiseling. The experiment was carried out in Botucatu, São Paulo State, Brazil. Soil quality was estimated using the S index and soil water retention curves (in the layers of 0-0.05, 0.075-0.125, 0.15-0.20, 0.275-0.325, and 0.475-0.525 m deep). Crop rotation and chiseling improved soil quality, increasing the S index to over 0.035 to a depth of 20 cm in the soil profile. The improved soil quality, as shown by the S index, makes the use of mechanical chiseling unnecessary, since after 3 years the soil physical quality under no-tilled crop rotation and chiseling was similar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phosphorus supply to crops in tropical soils is deficient due to its somewhat insoluble nature in soil, and addition of P fertilizers has been necessary to achieve high yields. The objective of this study was to examine the mechanisms through which a cover crop (Congo grass - Brachiaria ruziziensis) in rotation with soybean can enhance soil and fertilizer P availability using long-term field trials and laboratory chemical fractionation approaches. The experimental field had been cropped to soybean in rotation with several species under no-till for six years. An application rate of no P or 240 kg ha-1 of P2O5 had been applied as triple superphosphate or as Arad rock phosphate. In April 2009, once more 0.0 or 80.0 kg ha-1 of P2O5 was applied to the same plots when Congo grass was planted. In November 2009, after Congo grass desiccation, soil samples were taken from the 0-5 and 5-10 cm depth layer and soil P was fractionated. Soil-available P increased to the depth of 10 cm through growing Congo grass when P fertilizers were applied. The C:P ratio was also increased by the cover crop. Congo grass cultivation increased P content in the soil humic fraction to the depth of 10 cm. Congo grass increases soil P availability by preventing fertilizer from being adsorbed and by increasing soil organic P.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphorus fractions play a key role in sustaining the productivity of acid-savanna Oxisols and are influenced by tillage practices. The aim of this study was to quantify different P forms in an Oxisol (Latossolo Vermelho-Amarelo) from the central savanna region of Brazil under management systems with cover crops in maize rotation. Three cover crops (Canavalia brasiliensis, Cajanus cajan (L.), and Raphanus sativus L.) were investigated in maize rotation systems. These cover crops were compared to spontaneous vegetation. The inorganic forms NaHCO3-iP and NaOH-iP represented more than half of the total P in the samples collected at the depth of 5-10 cm during the rainy season when the maize was grown. The concentration of inorganic P of greater availability (NaHCO3-iP and NaOH-iP) was higher in the soil under no-tillage at the depth of 5-10 cm during the rainy season. Concentrations of organic P were higher during the dry season, when the cover crops were grown. At the dry season, organic P constituted 70 % of the labile P in the soil planted to C. cajan under no-tillage. The cover crops were able to maintain larger fractions of P available to the maize, resulting in reduced P losses to the unavailable pools, mainly in no-tillage systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crop rotation and cover crop can be important means for enhancing crop yield in rainfed areas such as the lower Coastal Bend Region of Texas, USA. A trial was conducted in 1995 as part of a long-term cropping experiment (7 years) to investigate the effect of oat (Avena sativa L.) cover and rotation on soil water storage and yield of sorghum (Sorghum bicolor L.). The trial design was a RCB in a split-plot arrangement with four replicates. Rotation sequences were the main plots and oat cover crop the subplots. Cover crop reduced sorghum grain yield. This effect was attributed to a reduced concentration of available soil N and less soil water storage under this treatment. By delaying cover termination, the residue with a high C/N acted as an N sink through competition and/or immobilization instead of an N source to sorghum plants. Crop rotation had a significantly positive effect on sorghum yield and this effect was attributed to a significantly larger amount of N concentration under these rotation sequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this trial was to estimate the total dry matter (TDMI) and daily pasture dry matter intakes (PDMI) by lactating crossbred Holstein - Zebu cows grazing elephant grass (Pennisetum purpureum Schum.) paddocks submitted to different rest periods. Three groups of 24 cows were used during two years. The paddocks were grazed during three days at the stocking rate of 4.5 cows/ha. Treatments consisted of resting periods of 30 days without concentrate and resting periods of 30, 37.5 and 45 days with 2 kg/cow/day of 20.6% crude protein concentrate. From July to October, pasture was supplemented with chopped sugarcane plus 1% urea. Total daily dry matter intake was estimated using the extrusa in vitro dry matter digestibility and the fecal output with chromium oxide. Regardless of the treatment the estimated average TDMI was 2.7, 2.9 and 2.9±0.03% and the mean PDMI was 1.9, 2.1 and 2.1±0.03% of body weight in the first, second and third grazing day, respectively (P<0.05). Only during the summer pasture quality was the same whichever the grazing day. Sugarcane effectively replaced grazing pasture, mainly in the first day when pasture dry matter intake was lowest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to evaluate the influence of different grazing periods on beef animal production and on wheat forage and grain yield. The experiment was carried out in Pato Branco, PR, Brazil. Six grazing periods were evaluated (0, 21, 42, 63, 84, and 105 days) on dual-purpose wheat cultivar BRS Tarumã. Purunã steers, with average live weight of 162 kg and ten months of age, were kept under continuous grazing using a variable stocking rate, in order to maintain the established sward height of 25 cm. Greater increases in total animal gain (TAG) occurred with longer grazing periods. However, there was little increase after 63 days (490 kg ha-1), and TAG decreased from 552 to 448 kg ha-1 between 84 and 105 days. Grain yield decreased from 2,830 to 610 kg ha-1 when the grazing period increased from 0 to 105 days, but there was little change after 63 days (750 kg ha-1). Cultivar BRS Tarumã shows excellent animal production potential, and the decision on how long wheat pastures should be grazed must be based on relative prices of grain and livestock.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to assess the effect of poultry litter fertilization levels on corn and black oat yield using different grazing intensities, poultry litter levels (mixture of manure and bedding material) and a chemical fertilization level. The experimental design was a randomized complete block in a split-plot arrangement with four replicates. Black oat + ryegrass grazing intensities, characterized by different pasture sward management, with animal entrance at 25, 30 and 35-cm heights and exit at 5.0, 10 and 15-cm heights, were established at the main plots. After the grazing period, corn was grown at the subplots with four levels of poultry litter (0, 4,953, 9,907 and 14,860 kg ha-1), aiming to supply 0, 100, 200 and 300 kg ha-1 of nitrogen, and a treatment with chemical fertilizer, according to soil analysis. Grazing intensities had no effect on corn yield. Corn yield was 7,493, 8,458, 9,188, 10,247 and 11,028 kg ha-1, respectively, for the treatments without and with 4,953, 9,907 and 14,860 kg ha-1 of poultry litter, and the treatment with chemical fertilization. Poultry litter levels have a residual effect on the production of black oat grown in succession to corn.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to evaluate the influence of pasture composition and regrowth age on the relationship between feeding behavior and ruminal fermentation in dairy cows grazing perennial ryegrass with or without white clover. The experiment was carried out in a 2x2 factorial arrangement, with two sward types and two ages of regrowth. Swards of perennial ryegrass sown alone (PRG) and of perennial ryegrass mixed with white clover (GC) were evaluated. Twelve late-lactation Holstein cows, fistulated at the rumen, were distributed in a 4x4 latin square experimental design with four 12-day periods. Daily distribution of grazing was similar in the PRG and the GC swards, but the concentration of rumen volatile fatty acids (VFA) was higher and the proportion of propionate was lower on mixed swards during the day. Daily distribution of grazing was similar in pastures of different ages. However, in the oldest swards, rumen fluid pH increased and VFA concentration decreased after evening milking. Time spent grazing does not influence ruminal fermentation, which depends on the changes that occur as different sward layers are grazed.