52 resultados para graphite-polyurethane composite electrode
em Scielo Saúde Pública - SP
Resumo:
In order to a better characterization of a graphite-polyurethane composite intended to be used as a voltammetric sensor, the performance in a square wave voltammetric procedure was investigated. Using hydroquinone (HQ) as a probe, the electrode showed to be useful in square wave voltammetry with limit of detection of 0.28 µmol L-1, with recoveries between 99.1 and 101.5%. The results of the proposed method agreed with HPLC ones within 95% confidence level.
Resumo:
This work presents the electrochemical and quantum chemical studies of the oxidation of the tricyclic antidepressant amitriptyline (AM) employing a carbon-polyurethane composite electrode (GPU) in a 0.1 mol L-1 BR buffer. The electrochemical results showed that the oxidation of AM occurs irreversibly at potentials close to 830 mV with the loss of one electron and one proton and is controlled by reagent and product adsorption. According to the PM3 results, the atom C16 is the region of highest probability for the oxidation of AM since it has the largest charge variation.
Resumo:
A composite electrode prepared by mixing a commercial epoxy resin Araldite® and graphite powder is proposed to be used in didactic experiments. The electrode is prepared by the students and applied in simple experiments to demonstrate the effect of the composite composition on the conductivity and the voltammetric response of the resulting electrode, as well as the response in relation to the scan rate dependence on mass transport. The possibility of using the composite electrode in quantitative analysis is also demonstrated.
Resumo:
A fluid conducting composite material prepared from graphite powder, commercial epoxy resin Araldite®, and cyclohexanone has been developed. The composition was optimized considering the mechanical properties as conductivity and adhesiveness using response surface methodology. This work employed cyclic voltammetry and amperometry to investigate the characteristics of such composite electrodes without and with the insertion of Prussian blue in the electrode body (bulk modified electrode). The composite electrodes were also successfully used for the amperometric detection of hydrogen peroxide at 0.0V vs Ag/AgCl.
Resumo:
A simple flow-injection amperometric procedure using a three-electrode-integrated sensor for the determination of H2O2 in antiseptic mouthwash is reported. This method involves the use of a working composite electrode modified with Prussian Blue (PB) particles that was easily adapted as detector in FIA. The best amperometric response was observed for a composite containing 30% of graphite modified with PB particles (GAP) and 70% of pure graphite (GR). The proposed method presents a linear response in the range of 10 to 200 μmol L-1. The detection and quantification limits were 0.8 and 2.6 μmol L-1, respectively.
Resumo:
This work proposes the use of a graphite-Araldite® 70% (graphite, m/m) composite electrode in didactic experiments, specifically in the quantitative determination of the neurotransmitter dopamine (DA) in a sample of pharmaceutical formulation. The goal is to demonstrate the possibility of using voltammetric techniques in quality control of medicines, besides covering some concepts such as the influence of pH on the redox process, the differential pulse voltammetry (DPV) technique, the optimization of experiments and comparison with an official method described in the United States Pharmacopoeia.
Resumo:
The construction of a tubular hydrogen ion-selective potentiometric electrode without inner reference solution, based on the tridodecylamine (TDDA) ionophore, and its evaluation in a flow system are described. TDDA was dissolved in 2-nitrophenyl octyl ether, dispersed in a PVC membrane and applied directly to a conducting support which consisted of an epoxy resin and graphite mixture. The electrode was designed with a tubular geometry to effort facilities to be coupled as part of a flow injection network. The main working characteristics such as response time, linear pH range, selectivity and life time were evaluated and compared with those obtained which a conventionally shaped electrode based on the same sensor. The electrode showed a slope of 51-52 mV dec-1 within a linear pH range from 4.0 up to 12.0.
Resumo:
It was carried out an electrochemical study of the cobalt electrodeposition onto HOPG electrode from an aqueous solution containing 10-2 M of CoSO4 + 1M (NH4)2SO4. Nucleation parameters such as nucleation rate, density of active nucleation sites, saturation nucleus and the rate constant of the proton reduction reaction (kPR) were determined from potentiostatic studies. An increase in kPR values with the decrease in the applied potential suggested a competition between H+ and Co2+ by the active sites on the surface. The ΔG energy calculated for the formation of stable nucleus was 8.21x10-21 J/nuclei. The AFM study indicated the formation of small clusters of 50-400 nm in diameter and 2-120 nm in height.
Resumo:
An analytical method for the determination of the anti-inflammatory drug 5-aminosalicylic acid (5-ASA) in pharmaceutical formulations using square wave voltammetry at pencil graphite electrodes was developed. After the optimization of the experimental conditions, calibration curves were obtained in the linear concentration range from 9.78 × 10-7 to 7.25 × 10-5 mol L-1 resulting in a limit of detection of 2.12 ± 0.05 x 10-8 mol L-1. Statistical tests showed that the concentrations of 5-ASA in commercial tablets and enemas obtained with the proposed voltammetric method agreed with HPLC values at a 95% confidence level.
Resumo:
The aim of this study was to evaluate the response to the implantation of synthetic hydroxyapatite 30% (HAP-91®) in different physical states as dermal filler. Eighteen New Zealand rabbits were used, distributed randomly into two equal groups and then divided into three groups according to the postoperative period at 8, 21 and 49 days. One mL of HAP-91®, fluid and viscous, was implanted in the subcutaneous tissue, 1 cm proximal to the cranial crest of the right scapula. The thickness of the skin was measured before and after implantation and for the following 15 days. Pain sensitivity assessment was conducted, assigning the following scores: 0 - when the animal allowed the touch of the implant area and expressed no signs of pain; 1 - when the animal allowed the touch, but pain reaction occurred, like increase of the respiratory rate or attempt to escape; 2 - when the animal did not allow the touch to the implanted area. At 8, 21 and 49 days, biopsy of the implanted area was performed. No difference was observed between the thickness of the skin (p>0.05) and all animals received a score 0 for soreness. Histological analysis did not reveal any obvious inflammatory process, showing a predominance of mononuclear cells in samples of eight days and tissue organization around the biomaterial with a tendency to encapsulation. The results indicate that HAP-91®, both viscous and fluid, is biocompatible and suitable for dermal filling.
Resumo:
OBJECTIVE - To determine if the application of a continuous electrode paste band on precordial leads results in alteration of the electrocardiographic tracing as compared with an adequate amount of electrode paste, and if the former condition does not cause uniform morphologies from V1 to V6. METHODS - The amplitude and morphology of the electrocardiographic waves on the precordial leads in electrocardiographic tracings, which were performed with standard (control group) or excessive (continuous band) application of the electrode paste, were compared. RESULTS - None of the 106 patients studied showed uniformity of the QRS morphology from V1 to V6. The eletrocardiographic alterations identified in the tracings performed with a continuous electrode paste band that showed statistical significance in relation to the control group were the following: inversion of the P wave in V1; inversion of the T wave in V1, V2, and V3; appearance of R' waves in V1 and V2; disappearance of S waves in V1; appearance of S waves in V5 and V6; alterations in the amplitude of almost all waves, in all leads. CONCLUSION - Application of a continuous electrode paste band in the precordial leads may cause significant alterations in the electrocardiographic tracing obtained.
Resumo:
D53 (RibomuntyR) is a composite vaccine made of immunogenic ribosomes from 4 bacterial species (Klebsiella pneumoniae, Haemophilus influenzae, Streptococcus pyogenes and Streptococcus pneumoniae) associated with a membrane proteoglycan from a non encapsulated strain of Klebsiella pneumoniae. D53 is a potent inducer of interleukin-1 production by mouse BALB/c spleen cells as shown by the C3H/HeJ thymocyte co-stimulation assay. Furthermore D53 triggers DNA synthesis by mouse spleen cells and induces the maturation of B lymphocytes into immunoglobulin secreting cells. Polyclonal B cell activation by D53 was readily achieved in the C3H/HeJ strain which is deficient in its response to E. coli lipopolysaccharide. The proliferative response to D53 was abrogated by removal of B cells from the spleen cell suspension, but it was not altered after depletion of T cells or adherent cells. D53 induced polyclonal B cell activation of spleen cells from athymic nude mice and from CBA/N mice. Each component of D53 induced polyclona B cell activation except ribosomes from Streptococcus pneumoniae. Each triggered Interleukin-1 synthesis except ribosomes from Klebsiella penumoniae. These in vitro properties may account for some of the in vivo immunostimulating properties of this composite vaccine.
Resumo:
Chemically modified electrodes (CMEs) have been subject of considerable attention since its inception about 23 years ago. CMEs result of a deliberate immobilization of a modifier agent onto the electrode surface obtained through chemical reactions, chemisorption, composite formation or polymer coating. This immobilization seeks transfer the physicochemical properties of the modifier to the electrode surface and thus to dictate and control the behavior of the electrode/solution interface. In recent years the interest in CMEs has increased particularly to enhance the sensitivity and/or the selectivity of electroanalytical techniques. In general higher sensitivity and/or selectivity may be achieved by exploiting one or more of the following phenomena: electrocatalysis, preconcentration and interferents exclusion. This paper deals with the application of CMEs in electroanalysis, including a brief presentation of the more general procedures that have been employed for the modification of electrode surfaces.
Resumo:
This paper proposes an experiment to be performed in both instrumental analysis and experimental physical-chemistry curricular disciplines in order to open options to develop challenging basic research activities. Thus the experimental procedures and the results obtained in the preparation of electrodeposited lead dioxide onto graphite and its evaluation as potentiometric sensor for H3O+ and Pb2+ ions, are presented. The data obtained in acid-base titrations were compared with those of the traditional combination glass electrode at the same conditions. Although a linear sub-Nernstian response to free hydrogen ions was observed for the electrodeposited PbO2 electrode, a good agreement was obtained between them. Working as lead(II) sensing electrode, the PbO2 showed a linear sub-Nernstian behavior at total Pb2+ concentrations ranging from 3,5 x 10-4 to 3,0 x 10-2 mol/L in nitrate media. For the redox couple PbO2/Pb(II) the operational slope converges to the theoretical one, as the acidity of the working solution increases.
Resumo:
The alizarin red S (ARS) has been used as a spectrophotometric reagent of several metals for a long time. Now this alizarin has been used as modifier agent of electrodes, for voltammetric analyses. In this work cyclic voltammetry experiments was accomplished on closed circuit, with the objective of studying the voltammetric behavior of alizarin red S adsorbed and of its copper complex, on the surface of the pyrolytic graphite electrode. These studies showed that ARS strongly adsorbs on the surface of this electrode. This adsorption was used to immobilize ions copper(II) from the solution.