14 resultados para genetic regulatory network, stochastic modeling, stochastic simulation, noise
em Scielo Saúde Pública - SP
Resumo:
ABSTRACT The traditional method of net present value (NPV) to analyze the economic profitability of an investment (based on a deterministic approach) does not adequately represent the implicit risk associated with different but correlated input variables. Using a stochastic simulation approach for evaluating the profitability of blueberry (Vaccinium corymbosum L.) production in Chile, the objective of this study is to illustrate the complexity of including risk in economic feasibility analysis when the project is subject to several but correlated risks. The results of the simulation analysis suggest that the non-inclusion of the intratemporal correlation between input variables underestimate the risk associated with investment decisions. The methodological contribution of this study illustrates the complexity of the interrelationships between uncertain variables and their impact on the convenience of carrying out this type of business in Chile. The steps for the analysis of economic viability were: First, adjusted probability distributions for stochastic input variables (SIV) were simulated and validated. Second, the random values of SIV were used to calculate random values of variables such as production, revenues, costs, depreciation, taxes and net cash flows. Third, the complete stochastic model was simulated with 10,000 iterations using random values for SIV. This result gave information to estimate the probability distributions of the stochastic output variables (SOV) such as the net present value, internal rate of return, value at risk, average cost of production, contribution margin and return on capital. Fourth, the complete stochastic model simulation results were used to analyze alternative scenarios and provide the results to decision makers in the form of probabilities, probability distributions, and for the SOV probabilistic forecasts. The main conclusion shown that this project is a profitable alternative investment in fruit trees in Chile.
Resumo:
ABSTRACT This study aimed to verify the differences in radiation intensity as a function of distinct relief exposure surfaces and to quantify these effects on the leaf area index (LAI) and other variables expressing eucalyptus forest productivity for simulations in a process-based growth model. The study was carried out at two contrasting edaphoclimatic locations in the Rio Doce basin in Minas Gerais, Brazil. Two stands with 32-year-old plantations were used, allocating fixed plots in locations with northern and southern exposure surfaces. The meteorological data were obtained from two automated weather stations located near the study sites. Solar radiation was corrected for terrain inclination and exposure surfaces, as it is measured based on the plane, perpendicularly to the vertical location. The LAI values collected in the field were used. For the comparative simulations in productivity variation, the mechanistic 3PG model was used, considering the relief exposure surfaces. It was verified that during most of the year, the southern surfaces showed lower availability of incident solar radiation, resulting in up to 66% losses, compared to the same surface considered plane, probably related to its geographical location and higher declivity. Higher values were obtained for the plantings located on the northern surface for the variables LAI, volume and mean annual wood increase, with this tendency being repeated in the 3PG model simulations.
Resumo:
In the forced-air cooling process of fruits occurs, besides the convective heat transfer, the mass transfer by evaporation. The energy need in the evaporation is taken from fruit that has its temperature lowered. In this study it has been proposed the use of empirical correlations for calculating the convective heat transfer coefficient as a function of surface temperature of the strawberry during the cooling process. The aim of this variation of the convective coefficient is to compensate the effect of evaporation in the heat transfer process. Linear and exponential correlations are tested, both with two adjustable parameters. The simulations are performed using experimental conditions reported in the literature for the cooling of strawberries. The results confirm the suitability of the proposed methodology.
Resumo:
This work presents the results of a Hybrid Neural Network (HNN) technique as applied to modeling SCFE curves obtained from two Brazilian vegetable matrices. A series Hybrid Neural Network was employed to estimate the parameters of the phenomenological model. A small set of SCFE data of each vegetable was used to generate an extended data set, sufficient to train the network. Afterwards, other sets of experimental data, not used in the network training, were used to validate the present approach. The series HNN correlates well the experimental data and it is shown that the predictions accomplished with this technique may be promising for SCFE purposes.
Resumo:
The Practical Stochastic Model is a simple and robust method to describe coupled chemical reactions. The connection between this stochastic method and a deterministic method was initially established to understand how the parameters and variables that describe the concentration in both methods were related. It was necessary to define two main concepts to make this connection: the filling of compartments or dilutions and the rate of reaction enhancement. The parameters, variables, and the time of the stochastic methods were scaled with the size of the compartment and were compared with a deterministic method. The deterministic approach was employed as an initial reference to achieve a consistent stochastic result. Finally, an independent robust stochastic method was obtained. This method could be compared with the Stochastic Simulation Algorithm developed by Gillespie, 1977. The Practical Stochastic Model produced absolute values that were essential to describe non-linear chemical reactions with a simple structure, and allowed for a correct description of the chemical kinetics.
Resumo:
The objective of this work was to compare the relative efficiency of initial selection and genetic parameter estimation, using augmented blocks design (ABD), augmented blocks twice replicated design (DABD) and group of randomised block design experiments with common treatments (ERBCT), by simulations, considering fixed effect model and mixed model with regular treatment effects as random. For the simulations, eight different conditions (scenarios) were considered. From the 600 simulations in each scenario, the mean percentage selection coincidence, the Pearsons´s correlation estimates between adjusted means for the fixed effects model, and the heritability estimates for the mixed model were evaluated. DABD and ERBCT were very similar in their comparisons and slightly superior to ABD. Considering the initial stages of selection in a plant breeding program, ABD is a good alternative for selecting superior genotypes, although none of the designs had been effective to estimate heritability in all the different scenarios evaluated.
Resumo:
The objective of this work was to develop, validate, and compare 190 artificial intelligence-based models for predicting the body mass of chicks from 2 to 21 days of age subjected to different duration and intensities of thermal challenge. The experiment was conducted inside four climate-controlled wind tunnels using 210 chicks. A database containing 840 datasets (from 2 to 21-day-old chicks) - with the variables dry-bulb air temperature, duration of thermal stress (days), chick age (days), and the daily body mass of chicks - was used for network training, validation, and tests of models based on artificial neural networks (ANNs) and neuro-fuzzy networks (NFNs). The ANNs were most accurate in predicting the body mass of chicks from 2 to 21 days of age after they were subjected to the input variables, and they showed an R² of 0.9993 and a standard error of 4.62 g. The ANNs enable the simulation of different scenarios, which can assist in managerial decision-making, and they can be embedded in the heating control systems.
Resumo:
ABSTRACT The citriculture consists in several environmental risks, as weather changes and pests, and also consists in considerable financial risk, mainly due to the period ofreturn on the initial investment. This study was motivated by the need to assess the risks of a business activity such as citriculture. Our objective was to build a stochastic simulation model to achieve the economic and financial analysis of an orange producer in the Midwest region of the state of Sao Paulo, under conditions of uncertainty. The parameters used were the Net Present Value (NPV), the Modified Internal Rate of Return(MIRR), and the Discounted Payback. To evaluate the risk conditions we built a probabilistic model of pseudorandom numbers generated with Monte Carlo method. The results showed that the activity analyzed provides a risk of 42.8% to reach a NPV negative; however, the yield assessed by MIRR was 7.7%, higher than the yield from the reapplication of the positive cash flows. The financial investment pays itself after the fourteenth year of activity.
Resumo:
Industrial applications demand that robots operate in agreement with the position and orientation of their end effector. It is necessary to solve the kinematics inverse problem. This allows the displacement of the joints of the manipulator to be determined, to accomplish a given objective. Complete studies of dynamical control of joint robotics are also necessary. Initially, this article focuses on the implementation of numerical algorithms for the solution of the kinematics inverse problem and the modeling and simulation of dynamic systems. This is done using real time implementation. The modeling and simulation of dynamic systems are performed emphasizing off-line programming. In sequence, a complete study of the control strategies is carried out through the study of several elements of a robotic joint, such as: DC motor, inertia, and gearbox. Finally a trajectory generator, used as input for a generic group of joints, is developed and a proposal of the controller's implementation of joints, using EPLD development system, is presented.
Resumo:
OBJECTIVE To analyze the methodology used for assessing the spatial distribution of specialized cardiac care units. METHODS A modeling and simulation method was adopted for the practical application of cardiac care service in the state of Santa Catarina, Southern Brazil, using the p-median model. As the state is divided into 21 health care regions, a methodology which suggests an arrangement of eight intermediate cardiac care units was analyzed, comparing the results obtained using data from 1996 and 2012. RESULTS Results obtained using data from 2012 indicated significant changes in the state, particularly in relation to the increased population density in the coastal regions. The current study provided a satisfactory response, indicated by the homogeneity of the results regarding the location of the intermediate cardiac care units and their respective regional administrations, thereby decreasing the average distance traveled by users to health care units, located in higher population density areas. The validity of the model was corroborated through the analysis of the allocation of the median vertices proposed in 1996 and 2012. CONCLUSIONS The current spatial distribution of specialized cardiac care units is more homogeneous and reflects the demographic changes that have occurred in the state over the last 17 years. The comparison between the two simulations and the current configuration showed the validity of the proposed model as an aid in decision making for system expansion.
Resumo:
The objective of this work was to accomplish the simultaneous determination of some chemical elements by Energy Dispersive X-ray Fluorescence (EDXRF) Spectroscopy through multivariate calibration in several sample types. The multivariate calibration models were: Back Propagation neural network, Levemberg-Marquardt neural network and Radial Basis Function neural network, fuzzy modeling and Partial Least Squares Regression. The samples were soil standards, plant standards, and mixtures of lead and sulfur salts diluted in silica. The smallest Root Mean Square errors (RMS) were obtained with Back Propagation neural networks, which solved main EDXRF problems in a better way.
Resumo:
In this study, biomarkers and transcriptional factor motifs were identified in order to investigate the etiology and phenotypic severity of Down syndrome. GSE 1281, GSE 1611, and GSE 5390 were downloaded from the gene expression ominibus (GEO). A robust multiarray analysis (RMA) algorithm was applied to detect differentially expressed genes (DEGs). In order to screen for biological pathways and to interrogate the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, the database for annotation, visualization, and integrated discovery (DAVID) was used to carry out a gene ontology (GO) function enrichment for DEGs. Finally, a transcriptional regulatory network was constructed, and a hypergeometric distribution test was applied to select for significantly enriched transcriptional factor motifs. CBR1, DYRK1A, HMGN1, ITSN1, RCAN1, SON, TMEM50B, and TTC3 were each up-regulated two-fold in Down syndrome samples compared to normal samples; of these, SON and TTC3 were newly reported. CBR1, DYRK1A, HMGN1, ITSN1, RCAN1, SON, TMEM50B, and TTC3 were located on human chromosome 21 (mouse chromosome 16). The DEGs were significantly enriched in macromolecular complex subunit organization and focal adhesion pathways. Eleven significantly enriched transcription factor motifs (PAX5, EGR1, XBP1, SREBP1, OLF1, MZF1, NFY, NFKAPPAB, MYCMAX, NFE2, and RP58) were identified. The DEGs and transcription factor motifs identified in our study provide biomarkers for the understanding of Down syndrome pathogenesis and progression.
Resumo:
In the Cerrado vegetation, where the seasonal is well defined, rainfall has an important role in controlling the flow of streams and consequently on the structure of macroinvertebrates community. Despite the effects of rainfall associated with seasonality are well studied, little is known about the effects of stochastic rains on the community. In the present study we evaluated the structure and faunal composition of four first-order streams in Central Brazil during the dry season in two years, with and without stochastic rains. Community sampling was done by colonization of boards of high density polyethylene (HDPE), removed after one month submerged in streams. Analysis of Variance (ANOVA) performed indicated no difference in rarefied richness between the two periods, different from numeric density of organisms that was higher in the period without disturbance; moreover, the Detrended Correspondence Analysis (DCA) revealed differences in faunal composition between the two periods. Our results indicate that stochastic rainfall is an important factor in structuring the macroinvertebrates community in studied region.