49 resultados para generalized second order conditions
em Scielo Saúde Pública - SP
Resumo:
A multivariate curve resolution method, "GENERALIZED RANK ANNIHILATION METHOD (GRAM)", is discussed and tested with simulated and experimental data. The analysis of simulated data provides general guidelines concerning the condition for uniqueness of a solution for a given problem. The second-order emission-excitation spectra of human and animal dental calculus deposits were used as an experimental data to estimate the performance of the above method. Three porphyrinic spectral profiles, for both human and cat, were obtained by the use of GRAM.
Resumo:
The adsorption of Cu(II) ions from aqueous solution by chitosan using a column in a closed hydrodynamic flow system is described. The adsorption capacities as a function of contact time of copper(II) ions and chitosan were determined by varying the ionic strength, temperature and the flow of the metal solution. The Langmuir model reproduced the adsorption isothermal data better than the Freundlich model. The experimental kinetic data correlate properly with the second-order kinetic reaction for the whole set of experimental adsorption conditions. The rate constants exercise great influence on the time taken for equilibrium to be established by complexation or electrostatic interaction between the amino groups of chitosan and the metal.
Resumo:
In this work, hydrotalcite, a layered double hydroxide, had its adsorption and ion exchange properties combined with the magnetic properties of iron oxide to produce a magnetic adsorbent, HT-Fe. The removal of As(V) by a HT-Fe adsorbent was evaluated under various conditions. The Kinetic process was well described by a pseudo-second order rate model. The maximum adsorption capacity, calculated with the Langmuir model showed to be dependent on pH, reaching values of 24.09, 10.19 and 7.44 mg g-1, respectively, for pH values of 4.0, 7.0 and 9.0. The inhibition by competition of anions is dependent on the type of ionic species.
Resumo:
This paper describes the adsorption of 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) from aqueous solution by decomposed peat. The peat presented a good adsorption process, close to 76.2% for E2 removal and approximately 55.0% for EE2. Moreover, the results indicated a probable multi-layered process. Adsorption isotherms were well fitted by Freundlich model. The data were evaluated considering the pseudo-first-order and pseudo-second-order approaches, being the second more significant mechanism in the rate-controlling step. Thermodynamic data revealed that hormones adsorption onto peat is spontaneous under the employed experimental conditions. The results confirmed the potential of this adsorbent to be employed for effluents treatment.
Resumo:
Adsorption of Reactive Blue 19 dye onto activated red mud was investigated. Red mud was treated with hydrogen peroxide (LVQ) and heated at both 400 ºC (LVQ400) and 500 ºC (LVQ500). These samples were characterized by pH, specific surface area, point of zero charge and mineralogical composition. Adsorption was found to be significantly dependent on solution pH, with acidic conditions proving to be the most favorable. The adsorption followed pseudo-second-order kinetics. The Langmuir isotherm was the most appropriate to describe the phenomenon of dye removal using LVQ, LVQ400 and LVQ500, with maximum adsorption capacity of 384.62, 357.14 and 454.54 mg g-1, respectively.
Resumo:
Rice flour was processed by extrusion cooking in the presence of variable contents of water and sucrose. The process was carried out in a twin-screw extruder under the conditions given by a centre rotational experimental design of second order. The effects of the independent variables, water content (27.9 to 42.1%), and sucrose content (0.1 to 19.9%) on the physicochemical properties of the extrudates were investigated. The water absorption index (WAI), water solubility index (WSI), volumetric expansion index (VEI), and bulk density (BD) were determined as dependent variables. BD was determined for samples before and after frying. An increase in water contents resulted in higher WAI and VEI, and lower WSI and BD for extrudates before and after frying. Higher sucrose levels led to increased values of WAI and VEI and to reduced values of WSI and BD. Both independent variables had significant influence on the physicochemical properties of rice flour extrudates. However, the sucrose content was the most significant. The interaction between these two independent variables and their quadratic effect were also important for the responses studied.
Resumo:
The objective of this work was to compare random regression models for the estimation of genetic parameters for Guzerat milk production, using orthogonal Legendre polynomials. Records (20,524) of test-day milk yield (TDMY) from 2,816 first-lactation Guzerat cows were used. TDMY grouped into 10-monthly classes were analyzed for additive genetic effect and for environmental and residual permanent effects (random effects), whereas the contemporary group, calving age (linear and quadratic effects) and mean lactation curve were analized as fixed effects. Trajectories for the additive genetic and permanent environmental effects were modeled by means of a covariance function employing orthogonal Legendre polynomials ranging from the second to the fifth order. Residual variances were considered in one, four, six, or ten variance classes. The best model had six residual variance classes. The heritability estimates for the TDMY records varied from 0.19 to 0.32. The random regression model that used a second-order Legendre polynomial for the additive genetic effect, and a fifth-order polynomial for the permanent environmental effect is adequate for comparison by the main employed criteria. The model with a second-order Legendre polynomial for the additive genetic effect, and that with a fourth-order for the permanent environmental effect could also be employed in these analyses.
Resumo:
Infinity readings for first order kinetics can be calculated from any three measurements (triads) of a physical property l at three equallyspaced times. Accurate results can be obtained from time intervals aslow as 0.4 half-life. Calculation of infinity readings l¥ from severaltriads at increasing values of time gives an insight into the deviation of the first order kinetics when parallel, consecutive or other spurious reactions occur along with the main first order reaction, not allowing direct measurements or calculation of l¥. The proposed method is more sensitive in distinguishing between first and second order kinetics than the Guggenheim and Kezdy-Swinbourne methods.
Resumo:
Mercury (II) adsorption studies in top soils (top 10 cm) from the Rio Negro basin show this process depends strongly on some selected parameters of the aqueous phase in contact with the soils. Maximum adsorption occurred in the pH range 3.0-5.0 (>90%). Dissolved organic matter shows an inhibitory effect on the availability of Hg (II) to be adsorbed by the soils, whereas a higher chloride content of the solution resulted in a lower adsorption of Hg (II) at pH 5.0. Soils with higher organic matter content were less affected by changes in the salinity. An increase in the initial Hg (II) concentration increased the amount of Hg (II) adsorbed by the soil and decreased the time needed to reach equilibrium. A Freundlich isotherm provided a good model for Hg (II) adsorption in the two types of soil studied. The kinetics of Hg (II) adsorption on Amazonian soils showed to be very fast and followed pseudo-second order kinetics. An environmental implication of these results is discussed under the real scenario present in the Negro River basin, where acidic waters are in contact with a soil naturally rich in mercury.
Resumo:
We make several simulations using the Monte Carlo method in order to obtain the chemical equilibrium for several first-order reactions and one second-order reaction. We study several direct, reverse and consecutive reactions. These simulations show the fluctuations and relaxation time and help to understand the solution of the corresponding differential equations of chemical kinetics. This work was done in an undergraduate physical chemistry course at UNIFIEO.
Resumo:
The aim of this work is to evaluate the use of natural zeolites to remove the NH4+ that remains in effluents from swine facilities which were submitted to physico-chemical and biological treatments. Experiments were made in batch made adding 5% (w/w) of adsorbent (0.6-1.3 and 3.0-8.0 mm) to synthetic and real swine facilities effluents. The results show that ammonium removal is influenced by adsorbent particle size and the presence of other ions in the effluent. The adsorption equilibrium was described by Langmuir as well as Freundlich isotherms and the kinetic data fitted well a pseudo-second order model.
Resumo:
In this work, a new adsorbent was prepared by microencapsulation of sulfoxine into chitosan microspheres by the spray drying technique. The new adsorbent was characterized by Raman spectroscopy, scanning electron microscopy and microanalysis of energy dispersive X-rays. The Cu(II) adsorption was studied as a function of pH, time and concentration. The optimum pH was found to be 6.0. The kinetic and equilibrium data showed that the adsorption process followed the pseudo second-order kinetic model and the Langmuir isotherm model over the entire concentration range. An increase of 8.0% in the maximum adsorption capacity of the adsorbent (53.8 mg g-1) was observed as compared to chitosan glutaraldehyde cross-linked microspheres.
Resumo:
The structural and surface properties of reticulated vitreous carbon (RVC) were discussed as a function of its heat treatment temperature (HTT), for samples produced in the range from 700 to 2000 ºC, using the furfuryl precursor resin. The samples were analyzed by x-ray photoelectron spectroscopy, first and second order Raman scattering as well as electrochemical response. Exploring the material turbostraticity concept, the interdependence between the RVC chemical surface variation and its defects were demonstrated. The influence of heteroatom presence was discussed in the material ordering for HTT lower than 1300 ºC while the graphitization process evolution was also pointed out for HTT higher than 1500 ºC.
Resumo:
Batch sorption experiments were carried out to remove methylene blue from its aqueous solutions using zeolites synthesized from fly ashes as an adsorbent. The adsorbents were characterized by XFR, XRD and SEM. Nearly 90 min of contact time are found to be sufficient for the adsorption of dye to reach equilibrium. Equilibrium data have been analyzed using Langmuir and Freundlich isotherms and the results were found to be well represented by the Freundlich isotherm equation. Adsorption data were fitted to both Lagergren first-order and pseudo-second-order kinetic models and the data were found to follow pseudo-second-order kinetics.
Resumo:
The adsorption kinetics of phosphate on Nb2O5.nH2O was investigated at initial phosphate concentrations 0.25, 0.50 and 1.00 mg.L-1. The kinetic process was described by a pseudo-second-order rate model very well. The adsorption thermodynamics was carried out at 298, 308, 318, 328 and 338 K. The positive values of both ΔH and ΔS suggest an endothermic reaction and increase in randomness at the solid-liquid interface during the adsorption. ΔG values obtained were negative indicating a spontaneous adsorption process. The Langmuir model described the data better than the Freundlich isotherm model. The effective desorption could be achieved using water at pH 12.