2 resultados para fires
em Scielo Saúde Pública - SP
Resumo:
Global warming has potentially catastrophic impacts in Amazonia, while at the same time maintenance of the Amazon forest offers one of the most valuable and cost-effective options for mitigating climate change. We know that the El Niño phenomenon, caused by temperature oscillations of surface water in the Pacific, has serious impacts in Amazonia, causing droughts and forest fires (as in 1997-1998). Temperature oscillations in the Atlantic also provoke severe droughts (as in 2005). We also know that Amazonian trees die both from fires and from water stress under hot, dry conditions. In addition, water recycled through the forest provides rainfall that maintains climatic conditions appropriate for tropical forest, especially in the dry season. What we need to know quickly, through intensified research, includes progress in representing El Niño and the Atlantic oscillations in climatic models, representation of biotic feedbacks in models used for decision-making about global warming, and narrowing the range of estimating climate sensitivity to reduce uncertainty about the probability of very severe impacts. Items that need to be negotiated include the definition of "dangerous" climate change, with the corresponding maximum levels of greenhouse gases in the atmosphere. Mitigation of global warming must include maintaining the Amazon forest, which has benefits for combating global warming from two separate roles: cutting the flow the emissions of carbon each year from the rapid pace of deforestation, and avoiding emission of the stock of carbon in the remaining forest that can be released by various ways, including climate change itself. Barriers to rewarding forest maintenance include the need for financial rewards for both of these roles. Other needs are for continued reduction of uncertainty regarding emissions and deforestation processes, as well as agreement on the basis of carbon accounting. As one of the countries most subject to impacts of climate change, Brazil must assume the leadership in fighting global warming.
Resumo:
The Brazilian savanna is a mosaic of phytophysiognomies influenced by edaphic and topographic factors that range from the occurrence of fires to anthropic disturbance. The goal of this study was a comparative analysis between two cerrado areas in southeastern Goiás, relating the floristic composition and structure of the vegetation to soil properties to better understand the physiognomic characteristics of the region. Twenty-five 20 × 20 m plots were used. All plants with circumference at breast height of more than 15 cm were measured. Soil samples collected at a depth of 0-20 cm were subjected to physical and chemical analyses. Canonical correspondence analysis (CCA) was used to detect possible correlations between the soil properties and species abundance and distribution. The density and total basal area were 1,647 ind/ha and 15.57 m2/ha, respectively, in Ouroana. At this site, 107 species were sampled. In Montes Claros de Goiás, the density and total basal area were 781 ind/ha and 17.62 m2/ha, and 120 species were sampled. The soil texture of Ouroana was sandy and significantly different from the medium to clayey texture of Montes Claros. The soils of both areas are dystrophic, however, more fertile in Montes Claros and aluminum-toxic in Ouroana. The species of vegetation were distributed according to soil fertility levels. The CCAs grouped species according to soil properties that defined location and abundance as well as the phytophysiognomies of the studied areas.