219 resultados para experimental autoimmune encephalitis
em Scielo Saúde Pública - SP
Resumo:
Experimental autoimmune encephalomyelitis (EAE) is an inflammatory disease of the brain and spinal cord that is mediated by CD4+ T lymphocytes specific to myelin components. In this study we compared development of EAE in Lewis rats from two colonies, one kept in pathogen-free conditions (CEMIB colony) and the other (Botucatu colony) kept in a conventional animal facility. Female Lewis rats were immunized with 100 µl of an emulsion containing 50 µg of myelin, associated with incomplete Freund's adjuvant plus Mycobacterium butyricum. Animals were daily evaluated for clinical score and weight. CEMIB colony presented high EAE incidence with clinical scores that varied from three to four along with significant weight losses. A variable disease incidence was observed in the Botucatu colony with clinical scores not higher than one and no weight loss. Immunological and histopathological characteristics were also compared after 20 days of immunization. Significant amounts of IFN-gamma, TNF-alpha and IL-10 were induced by myelin in cultures from CEMIB animals but not from the Botucatu colony. Significantly higher levels of anti-myelin IgG1 were detected in the CEMIB colony. Clear histopathological differences were also found. Cervical spinal cord sections from CEMIB animals showed typical perivascular inflammatory foci whereas samples from the Botucatu colony showed a scanty inflammatory infiltration. Helminths were found in animals from Botucatu colony but not, as expected, in the CEMIB pathogen-free animals. As the animals maintained in a conventional animal facility developed a very discrete clinical, and histopathological EAE in comparison to the rats kept in pathogen-free conditions, we believe that environmental factors such as intestinal parasites could underlie this resistance to EAE development, supporting the applicability of the hygiene hypothesis to EAE.
Resumo:
Experimental autoimmune encephalomyelitis (EAE) is mediated by CD4+ Th1 cells that mainly secrete IFN-γ and TNF-α, important cytokines in the pathophysiology of the disease. Spontaneous remission is, in part, attributed to the down regulation of IFN-γ and TNF-α by TGF-β. In the current paper, we compared weight, histopathology and immunological parameters during the acute and recovery phases of EAE to establish the best biomarker for clinical remission. Female Lewis rats were immunised with myelin basic protein (MBP) emulsified with complete Freund's adjuvant. Animals were evaluated daily for clinical score and weight prior to euthanisation. All immunised animals developed the expected characteristics of EAE during the acute phase, including significant weight loss and high clinical scores. Disease remission was associated with a significant reduction in clinical scores, although immunised rats did not regain their initial weight values. Brain inflammatory infiltrates were higher during the acute phase. During the remission phase, anti-myelin antibody levels increased, whereas TNF-α and IFN-γ production by lymph node cells cultured with MBP or concanavalin A, respectively, decreased. The most significant difference observed between the acute and recovery phases was in the induction of TNF-α levels in MBP-stimulated cultures. Therefore, the in vitro production of this cytokine could be used as a biomarker for EAE remission.
Resumo:
Fibronectin (FN), a large family of plasma and extracellular matrix (ECM) glycoproteins, plays an important role in leukocyte migration. In normal central nervous system (CNS), a fine and delicate mesh of FN is virtually restricted to the basal membrane of cerebral blood vessels and to the glial limitans externa. Experimental autoimmune encephalomyelitis (EAE), an inflammatory CNS demyelinating disease, was induced in Lewis rats with a spinal cord homogenate. During the preclinical phase and the onset of the disease, marked immunolabelling was observed on the endothelial luminal surface and basal lamina of spinal cord and brainstem microvasculature. In the paralytic phase, a discrete labelling was evident in blood vessels of spinal cord and brainstem associated or not with an inflammatory infiltrate. Conversely, intense immunolabelling was present in cerebral and cerebellar blood vessels, which were still free from inflammatory cuffs. Shortly after clinical recovery minimal labelling was observed in a few blood vessels. Brainstem and spinal cord returned to normal, but numerous inflammatory foci and demyelination were still evident near the ventricle walls, in the cerebral cortex and in the cerebellum. Intense expression of FN in brain vessels ascending from the spinal cord towards the encephalon preceded the appearance of inflammatory cells but faded away after the establishment of the inflammatory cuff. These results indicate an important role for FN in the pathogenesis of CNS inflammatory demyelinating events occurring during EAE.
Resumo:
Susceptibility to experimental autoimmune uveitis (EAU) in inbred mice has been associated with a dominant Th1 response. Elevated anti-inter-photoreceptor retinoid-binding protein (anti-IRBP) IgG2a/IgG1 antibody ratios have been implicated as candidate markers to predict disease severity. In the present study, both the anti-IRBP antibody isotype and severity of EAU phenotypes were examined in 4 non-isogenic genetically selected mouse lines to determine if they can be used as general markers of disease. Mice between 8 and 12 weeks old selected for high (H III) or low (L III) antibody response and for maximum (AIR MAX) or minimum (AIR MIN) acute inflammatory reaction (AIR) were immunized with IRBP. Each experiment was performed with at least 5 mice per group. EAU was evaluated by histopathology 21 days after immunization and the minimal criterion was inflammatory cell infiltration of the ciliary body, choroid and retina. Serum IgG1- and IgG2a-specific antibodies were determined by ELISA. EAU was graded by histological examination of the enucleated eyes. The incidence of EAU was lower in AIR MIN mice whereas in the other strains approximately 40% of the animals developed the disease. Low responder animals did not produce anti-IRBP IgG2a antibodies or interferon-gamma. No correlation was observed between susceptibility to EAU and anti-IRBP isotype profiles. Susceptibility to EAU is related to the intrinsic capacity to mount higher inflammatory reactions and increased production of anti-IRBP IgG2a isotype is not necessarily a marker of this immunologic profile.
Resumo:
Scutellaria baicalensis Georgi is one of the important medicinal herbs widely used for the treatment of various inflammatory diseases in Asia. Baicalin (BA) is a bioactive anti-inflammatory flavone found abundantly in Scutellaria baicalensis Georgi. To explore the therapeutic potential of BA, we examined the effects of systemic administration of the flavone (5 and 10 mg/kg, ip) on relapsing/remitting experimental autoimmune encephalomyelitis (EAE) induced by proteolipid protein 139-151 in SJL/J mice, an experimental model of multiple sclerosis. The mice treated with PBS or BA at day -1 and for 3 consecutive days were observed daily for clinical signs of disease up to 60 days after immunization. In the PBS-EAE group, neurological scores were: incidence (100%), mean day of onset (8.0 ± 0.73), peak clinical score (3.0 ± 0.4), and cumulative disease index (141.8 ± 19.4). In the BA-EAE group (5 or 10 mg kg-1 day-1, respectively), incidence (95 or 90%), mean day of onset (9.0 ± 0.80 or 9.2 ± 0.75; P = 0.000), peak clinical score (2.2 ± 0.3 or 2.0 ± 0.3; P = 0.000), and cumulative disease index (75.9 ± 10.1 or 62.9 ± 8.4; P = 0.000) decreased, accompanied by the histopathological findings (decrease of dense mononuclear infiltration surrounding vascellum) for the spinal cord. Additionally, the in vitro effects of BA (5, 10, and 25 µM) on mononuclear cells collected from popliteal and inguinal lymph nodes of day-10 EAE mice were evaluated using an MTT reduction assay for cell proliferation, and ELISA to measure IFN-g and IL-4 cytokines. Compared with the control group, BA caused an increase in IL-4 (EAE-DMSO: 3.56 ± 0.42 pg/mL vs EAE-BA (5, 10, and 25 µM): 6.03 ± 1.1, 7.83 ± 0.65, 10.54 ± 1.13 pg/mL, respectively; P < 0.001); but inhibited IFN-g (EAE-DMSO: 485.76 ± 25.13 pg/mL vs EAE-BA (5, 10, and 25 µM): 87.08 ± 9.24, 36.27 ± 5.44, 19.18 ± 2.93 pg/mL, respectively; P < 0.001) and the proliferation of mononuclear cells (EAE-DMSO: 0.73 ± 0.021 vs EAE-BA (5, 10, and 25 µM): 0.41 ± 0.015, 0.31 ± 0.018, 0.21 ± 0.11, respectively; P < 0.001) in a concentration-dependent manner. The results suggest that BA might be effective in the treatment of multiple sclerosis.
Resumo:
Although parasite-mediated host cell lysis is deemed to be an important cause of tissue destruction in ocular toxoplasmosis (OT), the severity of the disease is probably correlated with hypersensitivity and inflammation. Notwithstanding, the mechanisms that regulate the inflammatory process in recurrent OT are poorly understood. Recent evidence has identified interleukin (IL) 17 as a marker for disease severity. The ocular and cerebral presence of this cytokine is generally associated with the induction of autoimmune responses in the brain and the eye. Indeed, there are indications that autoimmunity may contribute to clinical variability in the activity of OT. IL-23, which induces the proliferation of IL-17-producing cells and IL-27, which is a counterplayer to IL-17, may regulate T(H)-1-cell-mediated responses in OT. The importance of these cytokines in experimental models of uveitis and encephalitis has been recently reported. CD25(+) regulatory T-cells may control the local inflammatory response and protect the host against collateral inflammatory tissue damage. The responses of these cells to OT may be suitably tailored to cope with either an acquired or a congenital aetiology. Knowledge relating to immunoreactivity in OT has grown impressively during the past few years. Its characteristic and variable features have been identified and the potential relevance of autoimmunity has been assessed. In light of this knowledge, potential future treatment options have been considered.
Resumo:
Objectives Discuss neuropsychiatric aspects and differential diagnosis of catatonic syndrome secondary to systemic lupus erythematosus (SLE) in a pediatric patient. Methods Single case report. Result A 13-year-old male, after two months diagnosed with SLE, started to present psychotic symptoms (behavioral changes, hallucinations and delusions) that evolved into intense catatonia. During hospitalization, neuroimaging, biochemical and serological tests for differential diagnosis with metabolic encephalopathy, neurological tumors and neuroinfections, among other tests, were performed. The possibility of neuroleptic malignant syndrome, steroid-induced psychosis and catatonia was also evaluated. A complete reversal of catatonia was achieved after using benzodiazepines in high doses, associated with immunosuppressive therapy for lupus, which speaks in favor of catatonia secondary to autoimmune encephalitis due to lupus. Conclusion Although catatonia rarely is the initial clinical presentation of SLE, the delay in recognizing the syndrome can be risky, having a negative impact on prognosis. Benzodiazepines have an important role in the catatonia resolution, especially when associated with parallel specific organic base cause treatment. The use of neuroleptics should be avoided for the duration of the catatonic syndrome as it may cause clinical deterioration.
Resumo:
An experimental model for acquired and congenital ocular toxoplasmosis as well as a model to induce experimental autoimmune uveitis (EAU) was investigated in Calomys callosus. Toxoplasma gondii, ME-49 strain, was used to infect males and pregnant- and not pregnant-females while S-antigen, a major glycoprotein of the retinal photoreceptor cell, was used to induce EAU. The ocular lesions elicited by T. gondii were characterized by the presence of cysts, free tachyzoites and inflammatory cells in the retina or related tissues. In the congenital form, 40% of the fetus presented ocular lesions, i.e., presence of cysts in the retina, vitreous, and extra-retinal tissues. In the acquired form, 75% of the females and 50% of the males presented unilateral ocular cysts both at 21 and 47 days post-infection. It was also demonstrated that S-antigen was not uveitogenic in the C. callosus model. No lesion was observed in the animals exclusively immunized with this retinal component, even when jacalin was used as additional adjuvant for polyclonal response to the retinal antigen. It can be concluded that C. callosus may constitute in a promising model for study both acquired and congenital ocular toxoplasmosis, particularly when it is important to make sure that a non autoimmune process is involved in the genesis of the ocular infection.
Resumo:
The incidences of schistosomiasis and multiple sclerosis (MS) are mutually exclusive worldwide suggesting that schistosomiasis may offer protection against the induction of the immune-mediated disease, MS. Recent studies using the mouse model of MS, experimental autoimmune encephalomyelitis, support a direct suppression of the onset of MS by chronic Schistosoma mansoni infection. Self-reactive Th1 but not Th2 responses develop in infected mice immunized with myelin oligodendrocyte glycoprotein albeit at reduced levels indicating that the induction of auto-reactive T cells is not abolished nor phenotypically altered. CNS infiltration by inflammatory cells, particularly macrophages, is significantly reduced in S. mansoni-infected, immunized mice compared to uninfected, immunized mice. Because activated macrophages are crucial to the induction of clinical disease, these findings support the hypothesis that differences in macrophage activation may contribute to the reduced incidence and delayed progression of experimental autoimmune encephalomyelitis during schistosomiasis.
Resumo:
The immunomodulador glatiramer acetate (GA) has been shown to significantly reduce the severity of symptoms during the course of multiple sclerosis and in its animal model - experimental autoimmune encephalomyelitis (EAE). Since GA may influence the response of non-neuronal cells in the spinal cord, it is possible that, to some extent, this drug affects the synaptic changes induced during the exacerbation of EAE. In the present study, we investigated whether GA has a positive influence on the loss of inputs to the motoneurons during the course of EAE in rats. Lewis rats were subjected to EAE associated with GA or placebo treatment. The animals were sacrificed after 15 days of treatment and the spinal cords processed for immunohistochemical analysis and transmission electron microscopy. A correlation between the synaptic changes and glial activation was obtained by performing labeling of synaptophysin and glial fibrillary acidic protein using immunohistochemical analysis. Ultrastructural analysis of the terminals apposed to alpha motoneurons was also performed by electron transmission microscopy. Interestingly, although the GA treatment preserved synaptophysin labeling, it did not significantly reduce the glial reaction, indicating that inflammatory activity was still present. Also, ultrastructural analysis showed that GA treatment significantly prevented retraction of both F and S type terminals compared to placebo. The present results indicate that the immunomodulator GA has an influence on the stability of nerve terminals in the spinal cord, which in turn may contribute to its neuroprotective effects during the course of multiple sclerosis.
Resumo:
In order to investigate the pathogenicity of the virus strain GOI 4191 that was isolated from a fatal adverse event after yellow fever virus (YFV) vaccination, an experimental assay using hamsters (Mesocricetus auratus) as animal model and YFV 17DD vaccine strain as virus reference was accomplished. The two virus strains were inoculated by intracerebral, intrahepatic and subcutaneous routes. The levels of viremia, antibody response, and aminotransferases were determined in sera; while virus, antigen and histopathological changes were determined in the viscera. No viremia was detected for either strain following infection; the immune response was demonstrated to be more effective to strain GOI 4191; and no significant aminotransferase levels alterations were detected. Strain GOI 4191 was recovered only from the brain of animals inoculated by the IC route. Viral antigens were detected in liver and brain by immunohistochemical assay. Histothological changes in the viscera were characterized by inflammatory infiltrate, hepatocellular necrosis, and viral encephalitis. Histological alterations and detection of viral antigen were observed in the liver of animals inoculated by the intrahepatic route. These findings were similar for both strains used in the experiment; however, significant differences were observed from those results previously reported for wild type YFV strains.
Resumo:
A review of the available literature on central nervous system involvement in experimental trypanosomiasis cruzi is undertaken. From a critical analysis of 26 works on experimental infections with Trypanosoma cruzi (23 on the acute phase, 2 on the chronic phase, and one describing sequentially both phases), all supported by neuropathologic studies, it can be concluded that: 1) central nervous system involvement during the acute phase, in the form of encephalitis in multiple foci, with variable intensity of the parasitism and inflamatory changes, is frequent and well documented; 2) in animals with more severe central nervous system involvement death occurs as a result of the brain lesions or acute chagasic myocarditis, the latter being always present; 3) in animals with more discrete brain involviment death during the acute phase is due to complications not related to the nervous system, among which congestive heart failure second to acute chagasic myocarditis, a condition that is always present, regardless of whether or not the central nervous system is infected; 4) it is possible that in surviving animals that had mild encephalitis the inflammatory changes from the acute phase usually regress as the infection progress to the chronic phase.
Resumo:
The participation of cell adhesion molecules (CAMs) in the establishment of autoimmune and infectious myocarditis is an important matter of investigation and may have therapeutic implication. Trypanosoma cruzi infection induces a CD8-mediated myocarditis in patients with severe cardiomyopathy and experimental animals. Previously, we have proposed that this predominance of CD8+ T-cells is, at least in part, consequence of the differential expression of CAMs on circulating CD8+ lymphocytes. In the present study we investigated the participation of CAMs in shaping the phenotypic nature of the autoimmune CD4-mediated myosin-induced and the CD8-mediated T. cruzi-elicited myocarditis. We provide evidence that the prevalence of a certain T-cell subset inside the inflamed heart reflects the differential profile of the adhesion molecules VLA-4, LFA-1, and ICAM-1 displayed on a large proportion of this particular T-cell population in peripheral blood during the early phase of inflammation. Further, the expression of VCAM-1, ligand for VLA-4, and ICAM-1, counter-receptor for LFA-1, was up-regulated on vascular endothelium and paralleled the entrance of inflammatory cells into the cardiac tissue. Thus, this up-regulated expression of receptors-counter-receptors that regulate T-cell transmigration through the vascular endothelium may have an important role in the pathogenesis of the early phase of both autoimmune and infectious myocarditis.
Resumo:
Evidence is accumulating that Th1 cells play an important role in the development of multiple sclerosis (MS) and experimental allergic encephalomyelitis (EAE), whereas Th2 cells contribute to recovery from disease. A major determinant in the development of Th1 and Th2 cells is the type of antigen-presenting cell (APC) involved and its functional characteristics, e.g., the production of interleukin-12. Therefore, modulation of APC might interfere with the development of Th1 type responses and as such be beneficial for MS and EAE. The potential of cytokines, in particular interleukin-10, and glucocorticoids to exert a selective effect on APC, and as a consequence to affect the Th1-Th2 balance in EAE, is discussed
Resumo:
People infected with Trypanosoma cruzi remain so for life, yet only 30-40% of these individuals develop characteristic chagasic cardiomyopathies. Similarly, when infected with the Brazilian strain of T. cruzi, DBA/2 mice develop severe cardiac damage while B10.D2 mice do not. To better understand the immunological parameters that may be involved in the disease process, we have used this murine model (DBA/2 vs B10.D2) and compared the changes in cytokine production during the course of infection with T. cruzi. Concanavalin A (Con A) stimulation of spleen cells harvested during the acute phase (day 30) resulted in similarly high levels of IFN-g in both mouse strains. However, the amount of IFN-g in supernatants from cultures of B10.D2 spleen cells initiated during the chronic phase (day 72) was at subacute levels, whereas secretion by chronic DBA/2 spleen cells remained high. In addition, Con A-stimulated spleen cells from acute DBA/2 mice produced approximately twice as much IL-10 and significantly more IL-4 than cells from B10.D2 mice. IL-4 secretion remained low by cells from chronic B10.D2 mice, but when using cells from chronic DBA/2 mice, levels continued to increase beyond the already high levels secreted by cells harvested during the acute phase. Proliferative responses to Con A stimulation by spleen cells from DBA/2 mice were significantly higher than those from B10.D2 mice in both the acute and chronic phases. These data suggest that enhanced responses in DBA/2 mice, which may be related to a higher parasite burden, a lack of down-regulation, and/or the onset of autoimmune phenomena, correlate with the more severe cardiomyopathy seen in pathopermissive mice.