133 resultados para erosion control
em Scielo Saúde Pública - SP
Resumo:
Erosion is deleterious because it reduces the soil's productivity capacity for growing crops and causes sedimentation and water pollution problems. Surface and buried crop residue, as well as live and dead plant roots, play an important role in erosion control. An efficient way to assess the effectiveness of such materials in erosion reduction is by means of decomposition constants as used within the Revised Universal Soil Loss Equation - RUSLE's prior-land-use subfactor - PLU. This was investigated using simulated rainfall on a 0.12 m m-1 slope, sandy loam Paleudult soil, at the Agriculture Experimental Station of the Federal University of Rio Grande do Sul, in Eldorado do Sul, State of Rio Grande do Sul, Brazil. The study area had been covered by native grass pasture for about fifteen years. By the middle of March 1996, the sod was mechanically mowed and the crop residue removed from the field. Late in April 1996, the sod was chemically desiccated with herbicide and, about one month later, the following treatments were established and evaluated for sod biomass decomposition and soil erosion, from June 1996 to May 1998, on duplicated 3.5 x 11.0 m erosion plots: (a) and (b) soil without tillage, with surface residue and dead roots; (c) soil without tillage, with dead roots only; (d) soil tilled conventionally every two-and-half months, with dead roots plus incorporated residue; and (e) soil tilled conventionally every six months, with dead roots plus incorporated residue. Simulated rainfall was applied with a rotating-boom rainfall simulator, at an intensity of 63.5 mm h-1 for 90 min, eight to nine times during the experimental period (about every two-and-half months). Surface and subsurface sod biomass amounts were measured before each rainfall test along with the erosion measurements of runoff rate, sediment concentration in runoff, soil loss rate, and total soil loss. Non-linear regression analysis was performed using an exponential and a power model. Surface sod biomass decomposition was better depicted by the exponential model, while subsurface sod biomass was by the power model. Subsurface sod biomass decomposed faster and more than surface sod biomass, with dead roots in untilled soil without residue on the surface decomposing more than dead roots in untilled soil with surface residue. Tillage type and frequency did not appreciably influence subsurface sod biomass decomposition. Soil loss rates increased greatly with both surface sod biomass decomposition and decomposition of subsurface sod biomass in the conventionally tilled soil, but they were minimally affected by subsurface sod biomass decomposition in the untilled soil. Runoff rates were little affected by the studied treatments. Dead roots plus incorporated residues were effective in reducing erosion in the conventionally tilled soil, while consolidation of the soil surface was important in no-till. The residual effect of the turned soil on erosion diminished gradually with time and ceased after two years.
Resumo:
Water erosion is the major cause of soil and water losses and the main factor of degradation of agricultural areas. The objective of this work was to quantify pluvial water erosion from an untilled soil with crop rows along the contour, in 2009 and 2010, on a Humic Dystrupept, with the following treatments: a) maize monoculture; b) soybean monoculture; c) common bean monoculture; d) intercropped maize and bean, exposed to four simulated rainfall tests of on hour at controlled intensity (64 mm h-1). The first test was applied 18 days after sowing and the others; 39, 75 and 120 days after the first test. The crop type influenced soil loss through water erosion in the simulated rainfall tests 3 and 4; soybean was most effective in erosion control in test 3, however, in test 4, maize was more effective. Water loss was influenced by the crop type in test 3 only, where maize and soybean were equally effective, with less runoff than from the other crops. The soil loss rate varied during the runoff sampling period in different ways, demonstrating a positive linear relationship between soil and water loss, in the different rainfall tests.
Resumo:
Soil erosion is one of the chief causes of agricultural land degradation. Practices of conservation agriculture, such as no-tillage and cover crops, are the key strategies of soil erosion control. In a long-term experiment on a Typic Paleudalf, we evaluated the temporal changes of soil loss and water runoff rates promoted by the transition from conventional to no-tillage systems in the treatments: bare soil (BS); grassland (GL); winter fallow (WF); intercrop maize and velvet bean (M+VB); intercrop maize and jack bean (M+JB); forage radish as winter cover crop (FR); and winter cover crop consortium ryegrass - common vetch (RG+CV). Intensive soil tillage induced higher soil losses and water runoff rates; these effects persisted for up to three years after the adoption of no-tillage. The planting of cover crops resulted in a faster decrease of soil and water loss rates in the first years after conversion from conventional to no-tillage than to winter fallow. The association of no-tillage with cover crops promoted progressive soil stabilization; after three years, soil losses were similar and water runoff was lower than from grassland soil. In the treatments of cropping systems with cover crops, soil losses were reduced by 99.7 and 66.7 %, compared to bare soil and winter fallow, while the water losses were reduced by 96.8 and 71.8 % in relation to the same treatments, respectively.
Resumo:
Knowledge of intensity-duration-frequency (IDF) relationships of rainfall events is extremely important to determine the dimensions of surface drainage structures and soil erosion control. The purpose of this study was to obtain IDF equations of 13 rain gauge stations in the state of Santa Catarina in Brazil: Chapecó, Urussanga, Campos Novos, Florianópolis, Lages, Caçador, Itajaí, Itá, Ponte Serrada, Porto União, Videira, Laguna and São Joaquim. The daily rainfall data charts of each station were digitized and then the annual maximum rainfall series were determined for durations ranging from 5 to 1440 min. Based on these, with the Gumbel-Chow distribution, the maximum rainfall was estimated for durations ranging from 5 min to 24 h, considering return periods of 2, 5, 10, 20, 25, 50, and 100 years,. Data agreement with the Gumbel-Chow model was verified by the Kolmogorov-Smirnov test, at 5 % significance level. For each rain gauge station, two IDF equations of rainfall events were adjusted, one for durations from 5 to 120 min and the other from 120 to 1440 min. The results show a high variability in maximum intensity of rainfall events among the studied stations. Highest values of coefficients of variation in the annual maximum series of rainfall were observed for durations of over 600 min at the stations of the coastal region of Santa Catarina.
Resumo:
The objective of this work was to evaluate the effect of coffee (Coffea arabica L.) population densities on the chemical and microbiological properties of an Oxisol. The work was carried out on soil samples of 0-20 cm depth originated from an experimental site which had been used for coffee tree spacing studies during 15 years, in Paraná State, Brazil. Eight coffee tree populations were evaluated: 7143, 3571, 2381, 1786, 1429, 1190, 1020, and 893 trees/ha. Increasing plant population increased soil pH, exchangeable Ca, Mg, K, extractable P, organic carbon, moisture content and coffee root colonization by vesicular arbuscular mycorrhizal fungi, and decreased exchangeable Al and microbial biomass. Such results were attributed to better erosion control, improved plant residue management and nutrient cycling, and decreased leaching losses. Increasing coffee tree population per unit of area has shown to be an important reclamation recuperation strategy for improving fertility of the acid soils in Paraná, Brazil.
Resumo:
The aim of this study was a survey of the estimated costs of soil erosion, an issue of fundamental importance in view of the current worldwide discussions on sustainability. A list was drawn up of research papers on erosion (on-site and off-site effects) and their respective costs. The estimates indicate the amount of resources spent in the process of soil degradation, raising a general awareness of the need for soil conservation. On-site costs affect the production units directly, while off-site costs create a burden borne by the environment, economy and society. In addition, estimating the costs of soil erosion should be effective to alert the agricultural producers, society and government for the need for measures that can be implemented to bring erosion under control. Among the various estimates of soil erosion costs between 1933 a 2010, the highest figure was 45.5 billion dollars a year for the European Union. In the United States, the highest figure was 44 billion dollars a year. In Brazil, estimates for the state of Paraná indicate a value of 242 million dollars a year, and for the state of São Paulo, 212 million dollars a year. These figures show, above all, that conservation measures must be implemented if crop and livestock farming production are to be sustainable.
Resumo:
Interrill erosion occurs by the particle breakdown caused by raindrop impact, by particle transport in surface runoff, by dragging and suspension of particles disaggregated from the soil surface, thus removing organic matter and nutrients that are essential for agricultural production. Crop residues on the soil surface modify the characteristics of the runoff generated by rainfall and the consequent particle breakdown and sediment transport resulting from erosion. The objective of this study was to determine the minimum amount of mulch that must be maintained on the soil surface of a sugarcane plantation to reduce the soil, water and nutrient losses by decreasing interrill erosion. The study was conducted in Pradópolis, São Paulo State, in 0.5 x 1.0 m plots of an Oxisol, testing five treatments in four replications. The application rates were based on the crop residue production of the area of 1.4 kg m-2 (T1- no cane trash; T2-25 % of the cane trash; T3- 50 % trash; T4-75 % trash; T5-100 % sugarcane residues on the surface), and simulated rainfall was applied at an intensity of 65 mm h-1 for 60 min. Runoff samples were collected in plastic containers and soon after taken to the laboratory to quantify the losses of soil, water and nutrients. To minimize soil loss by interrill erosion, 75 % of the cane mulch must be maintained on the soil, to control water loss 50 % must be maintained and 25 % trash controls organic matter and nutrient losses. This information can contribute to optimize the use of this resource for soil conservation on the one hand and the production of clean energy in sugar and alcohol industries on the other.
Resumo:
The problem of soil erosion in Brazil has been a focus of agricultural scientific research since the 19th century. The aim of this study was to provide a historical overview of the institutional landmarks which gave rise to the first studies in soil erosion and established the foundations of agricultural research in Brazil. The 19th century and beginning of the 20th century saw the founding of a series of institutions in Brazil, such as Botanical Gardens, executive institutions, research institutes, experimental stations, educational institutions of agricultural sciences, as well as the creation and diversification of scientific journals. These entities, each in its own way, served to foster soil erosion research in Brazil. During the Imperial period (1808-1889), discussions focused on soil degradation and conserving the fertility of agricultural land. During the First Republic (1889-1930), with the founding of various educational institutions and consolidation of research on soil degradation conducted by the Agronomic Institute of Campinas in the State of São Paulo, studies focused on soil depletion, identification of the major factors causing soil erosion and the measures necessary to control it. During the New State period (1930-1945), many soil conservation practices were developed and disseminated to combat erosion and field trials were set up, mainly to measure soil and water losses induced by hydric erosion. During the Brazilian New Republic (1945-1964), experiments were conducted throughout Brazil, consolidating soil and water conservation as one of the main areas of Soil Science in Brazil. This was followed by scientific conferences on erosion and the institutionalization of post-graduate studies. During the Military Regime (1964-1985), many research and educational institutions were founded, experimental studies intensified, and coincidently, soil erosion reached alarming levels which led to the development of the no-tillage system.
Resumo:
The action of rain and surface runoff together are the active agents of water erosion, and further influences are the soil type, terrain, soil cover, soil management, and conservation practices. Soil water erosion is low in the no-tillage management system, being influenced by the amount and form of lime and fertilizer application to the soil, among other factors. The aim was to evaluate the effect of the form of liming, the quantity and management of fertilizer application on the soil and water losses by erosion under natural rainfall. The study was carried out between 2003 and 2013 on a Humic Dystrupept soil, with the following treatments: T1 - cultivation with liming and corrective fertilizer incorporated into the soil in the first year, and with 100 % annual maintenance fertilization of P and K; T2 - surface liming and corrective fertilization distributed over five years, and with 75 % annual maintenance fertilization of P and K; T3 - surface liming and corrective fertilization distributed over three years, and with 50 % annual maintenance fertilization of P and K; T4 - surface liming and corrective fertilization distributed over two years, and with 25 % annual maintenance fertilization of P and K; T5 - fallow soil, without liming or fertilization. In the rotation the crops black oat (Avena strigosa ), soybean (Glycine max ), common vetch (Vicia sativa ), maize (Zea mays ), fodder radish (Raphanus sativus ), and black beans (Phaseolus vulgaris ). The split application of lime and mineral fertilizer to the soil surface in a no-tillage system over three and five years, results in better control of soil losses than when split in two years. The increase in the amount of fertilizer applied to the soil surface under no-tillage cultivation increases phytomass production and reduces soil loss by water erosion. Water losses in treatments under no-tillage cultivation were low in all crop cycles, with a similar behavior as soil losses.
Resumo:
Damping off is a nursery disease of great economic importance in papaya and seed treatment may be an effective measure to control. The aim of this work was to evaluate the quality of papaya seeds treated with fungicides and stored under two environmental and packaging conditions. Additionally, the efficiency of fungicide treatments in the control of damping-off caused by Rhizoctonia solani was evaluated. Papaya seeds were treated with the fungicides Captan, Tolylfluanid and the mixture Tolylfluanid + Captan (all commercial wettable powder formulations). Seeds of the control group were not treated. The seeds were stored for nine months in two conditions: packed in aluminum coated paper and kept at 7 ± 1ºC and in permeable kraft paper and kept in non-controlled environment. At the beginning of the storage and every three months the seed quality (germination and vigor tests), emergence rate index, height, dry mass and damping of plants in pre and post-emergence (in contaminated substrate and mycelia-free substrate) were analyzed. Both storage conditions as well as the fungicide treatments preserved the germination and seed vigor. In the infested substrate, seedling emergence was favored by fungicides, but in post-emergence, fungicides alone did not control the damping off caused by R. solani. Symptoms of damping off were not observed in the clean substrate. The results showed that the fungicide treatments may be used to pretreat papaya seed for long-term storage and commercialization.
Resumo:
All essential nutrients can affect the incidence and severity of plant diseases. Although silicon (Si) is not considered as an essential nutrient for plants, it stands out for its potential to decrease disease intensity in many crops. The mechanism of Si action in plant resistance is still unclear. Si deposition in plant cell walls raised the hypothesis of a possible physical barrier to pathogen penetration. However, the increased activity of phenolic compounds, polyphenol oxidases and peroxidases in plants treated with Si demonstrates the involvement of this element in the induction of plant defense responses. The studies examined in this review address the role of Si in disease control and the possible mechanisms involved in the mode of Si action in disease resistance in plants.
Resumo:
ABSTRACT Pathogenic fungi cause skin darkening and peach quality depreciation in post harvest. Therefore, alternative techniques to chemical treatment are necessary in order to reduce risks to human health. The aim of this study was to evaluate the effect of the application of Trichoderma harzianum in association with different fungicides applied before harvest to 'Eldorado' peaches for brown rot control and other quality parameters during storage. The treatments consisted of five preharvest fungicide applications (control, captan, iprodione, iminoctadine and tebuconazole) associated with postharvest application of T. harzianum, after cold storage (with and without application), in three evaluation times (zero, two and four days at 20 °C), resulting in a 5x2x3 factorial design. The application of T. harzianum only brought benefits to the control of brown rot when combined with the fungicide captan, at zero day shelf life. After two days, there was a greater skin darkening in peaches treated with T. harzianum compared with peaches without the treatment, except for peaches treated with the fungicide iprodione and T. harzianum The application of T. harzianum during postharvest showed no benefits for the control of brown rot, however, the association with fungicides reduced the incidence of Rhizopus stolonifer during the shelf life.