84 resultados para endothelial activity
em Scielo Saúde Pública - SP
Resumo:
Brown widow spider (Latrodectus geometricus) venom (BrWSV) produces few local lesions and intense systemic reactions such as cramps, harsh muscle pains, nausea, vomiting and hypertension. Approximately 16 protein bands under reducing conditions and ~ 14 bands under non-reducing conditions on a 12.5% sodium dodecyl sulfate-polyacrylamide gel electrophoresis were observed. Neurotoxic clinical manifestations were confirmed in vivo, while proteolytic activity was demonstrated on gelatine film. Severe ultrastructural damages in mice skeletal muscles were observed at 3, 6, 12 and 24 h postinjection with at total of 45 µg of venom protein. Infiltration of eosinophils and ruptures of the cellular membranes were observed in the muscles along with swelling of the nuclear cover and interruption of the collagen periodicity. Altered mitochondrias and autophage vacuoles, nuclear indentation and mitochondria without cristae, slight increment of intermyofibrillar and subsarcolemic spaces and myelinic figures formation were also observed. In the capillary, endothelial membrane unfolding into the lumen was noticed; along with myelinic figures compatible with a toxic myopathy. Swollen sarcotubular systems with lysis of membrane, intense mitochondria autophagia and areas without pinocytic vesicles were observed. Swollen mitochondria surrounded by necrotic areas, myofibrillar disorganization and big vacuolas of the sarcotubular system, degenerated mitochondrium with formation of myelinic figure was seen. Glycogenosomes with small particulate, muscle type glycogen was noticed. Autophagic vacuole (autophagolysosomes) and necrotic areas were also noticed. These damages may be due to interactive effects of the multifactorial action of venom components. However, Latrodectus geometricus venom molecules may also be utilized as neuro therapeutic tools, as they affect neuronal activities with high affinity and selectivity. To our knowledge, the present study is the first ultrastructural report in the literature of muscle injuries and neurological and proteolytic activities caused by BrWSV.
Resumo:
Endothelial nitric oxide synthase (eNOS) is the primary physiological source of nitric oxide (NO) that regulates cardiovascular homeostasis. Historically eNOS has been thought to be a constitutively expressed enzyme regulated by calcium and calmodulin. However, in the last five years it is clear that eNOS activity and NO release can be regulated by post-translational control mechanisms (fatty acid modification and phosphorylation) and protein-protein interactions (with caveolin-1 and heat shock protein 90) that direct impinge upon the duration and magnitude of NO release. This review will summarize this information and apply the post-translational control mechanisms to disease states.
Resumo:
An increased plasma concentration of von Willebrand factor (vWF) is detected in individuals with many infectious diseases and is accepted as a marker of endothelium activation and prothrombotic condition. To determine whether ExoU, a Pseudomonas aeruginosa cytotoxin with proinflammatory activity, enhances the release of vWF, microvascular endothelial cells were infected with the ExoU-producing PA103 P. aeruginosa strain or an exoU-deficient mutant. Significantly increased vWF concentrations were detected in conditioned medium and subendothelial extracellular matrix from cultures infected with the wild-type bacteria, as determined by enzyme-linked immunoassays. PA103-infected cells also released higher concentrations of procoagulant microparticles containing increased amounts of membrane-associated vWF, as determined by flow cytometric analyses of cell culture supernatants. Both flow cytometry and confocal microscopy showed that increased amounts of vWF were associated with cytoplasmic membranes from cells infected with the ExoU-producing bacteria. PA103-infected cultures exposed to platelet suspensions exhibited increased percentages of cells with platelet adhesion. Because no modulation of the vWF mRNA levels was detected by reverse transcription-polymerase chain reaction assays in PA103-infected cells, ExoU is likely to have induced the release of vWF from cytoplasmic stores rather than vWF gene transcription. Such release is likely to modify the thromboresistance of microvascular endothelial cells.
Resumo:
Dendritic cells (DCs) are antigen (Ag)-presenting cells that activate and stimulate effective immune responses by T cells, but can also act as negative regulators of these responses and thus play important roles in immune regulation. Pro-angiogenic vascular endothelial growth factor (VEGF) has been shown to cause defective DC differentiation and maturation. Previous studies have demonstrated that the addition of VEGF to DC cultures renders these cells weak stimulators of Ag-specific T cells due to the inhibitory effects mediated by VEGF receptor 1 (VEGFR1) and/or VEGFR2 signalling. As the enzyme indoleamine 2,3-dioxygenase (IDO) is recognised as an important negative regulator of immune responses, this study aimed to investigate whether VEGF affects the expression of IDO by DCs and whether VEGF-matured DCs acquire a suppressor phenotype. Our results are the first to demonstrate that VEGF increases the expression and activity of IDO in DCs, which has a suppressive effect on Ag-specific and mitogen-stimulated lymphocyte proliferation. These mechanisms have broad implications for the study of immunological responses and tolerance under conditions as diverse as cancer, graft rejection and autoimmunity.
Resumo:
Endothelial dysfunction is a major component of the pathophysiology of septicaemic group B Streptococcus (GBS) infections. Although cytokines have been shown to activate human umbilical vein endothelial cells (HUVECs), the capacity of interferon (IFN)-γ to enhance the microbicidal activity of HUVECs against GBS has not been studied. We report that the viability of intracellular bacteria was reduced in HUVECs activated by IFN-γ. Enhanced fusion of lysosomes with bacteria-containing vacuoles was observed by acid phosphatase and the colocalisation of Rab-5, Rab-7 and lysosomal-associated membrane protein-1 with GBS in IFN-γ-activated HUVECs. IFN-γ resulted in an enhancement of the phagosome maturation process in HUVECs, improving the capacity to control the intracellular survival of GBS.
Resumo:
Seven days after transection of the sciatic nerve NADPH-diaphorase activity increased in the small and medium neurons of the dorsal root ganglia of the turtle. However, this increase was observed only in medium neurons for up to 90 days. At this time a bilateral increase of NADPH-diaphorase staining was observed in all areas and neuronal types of the dorsal horn, and in positive motoneurons in the lumbar spinal cord, ipsilateral to the lesion. A similar increase was also demonstrable in spinal glial and endothelial cells. These findings are discussed in relation to the role of nitric oxide in hyperalgesia and neuronal regeneration or degeneration.
Resumo:
Targeted disruption of the neuronal nitric oxide synthase (nNOS) and endothelial nitric oxide synthase (eNOS) genes has led to knockout mice that lack these isoforms. These animal models have been useful to study the roles of nitric oxide (NO) in physiologic processes. nNOS knockout mice have enlarged stomachs and defects in the inhibitory junction potential involved in gastrointestinal motility. eNOS knockout mice are hypertensive and lack endothelium-derived relaxing factor activity. When these animals are subjected to models of focal ischemia, the nNOS mutant mice develop smaller infarcts, consistent with a role for nNOS in neurotoxicity following cerebral ischemia. In contrast, eNOS mutant mice develop larger infarcts, and show a more pronounced hemodynamic effect of vascular occlusion. The knockout mice also show that nNOS and eNOS isoforms differentially modulate the release of neurotransmitters in various regions of the brain. eNOS knockout mice respond to vessel injury with greater neointimal proliferation, confirming that reduced NO levels seen in endothelial dysfunction change the vessel response to injury. Furthermore, eNOS mutant mice still show a protective effect of female gender, indicating that the mechanism of this protection cannot be limited to upregulation of eNOS expression. The eNOS mutant mice also prove that eNOS modulates the cardiac contractile response to ß-adrenergic agonists and baseline diastolic relaxation. Atrial natriuretic peptide, upregulated in the hearts of eNOS mutant mice, normalizes cGMP levels and restores normal diastolic relaxation.
Resumo:
The anticlotting and antithrombotic activities of heparin, heparan sulfate, low molecular weight heparins, heparin and heparin-like compounds from various sources used in clinical practice or under development are briefly reviewed. Heparin isolated from shrimp mimics the pharmacological activities of low molecular weight heparins. A heparan sulfate from Artemia franciscana and a dermatan sulfate from tuna fish show a potent heparin cofactor II activity. A heparan sulfate derived from bovine pancreas has a potent antithrombotic activity in an arterial and venous thrombosis model with a negligible activity upon the serine proteases of the coagulation cascade. It is suggested that the antithrombotic activity of heparin and other antithrombotic agents is due at least in part to their action on endothelial cells stimulating the synthesis of an antithrombotic heparan sulfate.
Resumo:
Tissue factor is a transmembrane procoagulant glycoprotein and a member of the cytokine receptor superfamily. It activates the extrinsic coagulation pathway, and induces the formation of a fibrin clot. Tissue factor is important for both normal homeostasis and the development of many thrombotic diseases. A wide variety of cells are able to synthesize and express tissue factor, including monocytes, granulocytes, platelets and endothelial cells. Tissue factor expression can be induced by cell surface components of pathogenic microorganisms, proinflammatory cytokines and membrane microparticles released from activated host cells. Tissue factor plays an important role in initiating thrombosis associated with inflammation during infection, sepsis, and organ transplant rejection. Recent findings suggest that tissue factor can also function as a receptor and thus may be important in cell signaling. The present minireview will focus on the role of tissue factor in the pathogenesis of septic shock, infectious endocarditis and invasive aspergillosis, as determined by both in vivo and in vitro models.
Resumo:
Hypoxia activates endothelial cells by the action of reactive oxygen species generated in part by cyclooxygenases (COX) production enhancing leukocyte transmigration. We investigated the effect of specific COX inhibition on the function of endothelial cells exposed to hypoxia. Mouse immortalized endothelial cells were subjected to 30 min of oxygen deprivation by gas exchange. Acridine orange/ethidium bromide dyes and lactate dehydrogenase activity were used to monitor cell viability. The mRNA of COX-1 and -2 was amplified and semi-quantified before and after hypoxia in cells treated or not with indomethacin, a non-selective COX inhibitor. Expression of RANTES (regulated upon activation, normal T cell expressed and secreted) protein and the protective role of heme oxygenase-1 (HO-1) were also investigated by PCR. Gas exchange decreased partial oxygen pressure (PaO2) by 45.12 ± 5.85% (from 162 ± 10 to 73 ± 7.4 mmHg). Thirty minutes of hypoxia decreased cell viability and enhanced lactate dehydrogenase levels compared to control (73.1 ± 2.7 vs 91.2 ± 0.9%, P < 0.02; 35.96 ± 11.64 vs 22.19 ± 9.65%, P = 0.002, respectively). COX-2 and HO-1 mRNA were up-regulated after hypoxia. Indomethacin (300 µM) decreased COX-2, HO-1, hypoxia-inducible factor-1alpha and RANTES mRNA and increased cell viability after hypoxia. We conclude that blockade of COX up-regulation can ameliorate endothelial injury, resulting in reduced production of chemokines.
Resumo:
Vaccination with xenogeneic and syngeneic endothelial cells is effective for inhibiting tumor growth. Nontoxic diphtheria toxin (CRM197), as an immunogen or as a specific inhibitor of heparin-binding EGF-like growth factor, has shown promising antitumor activity. Therefore, immunization with or administration of viable human umbilical vein endothelial cells (HUVECs) combined with CRM197 could have an enhanced antitumor effect. Six-week-old C57BL/6J male mice were vaccinated with viable HUVECs, 1 x 10(6) viable HUVECs combined with 100 μg CRM197, or 100 μg CRM197 alone by ip injections once a week for 4 consecutive weeks. RM-1 cells (5 x 10(5)) were inoculated by sc injection as a preventive procedure. During the therapeutic procedure, 6-week-old male C57BL/6J mice were challenged with 1 x 10(5) RM-1 cells, then injected sc with 1 x 10(6) viable HUVECs, 1 x 10(6) viable HUVECs + 100 μg CRM197, and 100 μg CRM197 alone twice a week for 4 consecutive weeks. Tumor volume and life span were monitored. We also investigated the effects of immunization with HUVECs on the aortic arch wall and on wound healing. Vaccination with or administration of viable HUVECs+CRM197 enhanced the inhibition of RM-1 prostatic carcinoma by 24 and 29%, respectively, and prolonged the life span for 3 and 4 days, respectively, compared with those of only vaccination or administration with viable HUVECs of tumor-bearing C57BL/6J mice. Furthermore, HUVEC immunization caused some damage to the aortic arch wall but did not have remarkable effects on the rate of wound healing; the wounds healed in approximately 13 days. Treatment with CRM197 in combination with viable HUVECs resulted in a marked enhancement of the antitumor effect in the preventive or therapeutic treatment for prostatic carcinoma in vivo, suggesting a novel combination for anti-cancer therapy.
Resumo:
Obesity is strongly associated with high blood pressure, dyslipidemia, and type 2 diabetes. These conditions synergistically increase the risk of cardiovascular events. A number of central and peripheral abnormalities can explain the development or maintenance of high blood pressure in obesity. Of great interest is endothelial dysfunction, considered to be a primary risk factor in the development of hypertension. Additional mechanisms also related to endothelial dysfunction have been proposed to mediate the development of hypertension in obese individuals. These include: increase in both peripheral vasoconstriction and renal tubular sodium reabsorption, increased sympathetic activity and overactivation of both the renin-angiotensin system and the endocannabinoid system and insulin resistance. The discovery of new mechanisms regulating metabolic and vascular function and a better understanding of how vascular function can be influenced by these systems would facilitate the development of new therapies for treatment of obesity-associated hypertension.
Resumo:
β-arrestins are expressed proteins that were first described, and are well-known, as negative regulators of G protein-coupled receptor signaling. Penehyclidine hydrochloride (PHC) is a new anti-cholinergic drug that can inhibit biomembrane lipid peroxidation, and decrease cytokines and oxyradicals. However, to date, no reports on the effects of PHC on β-arrestin-1 in cells have been published. The aim of this study was to investigate the effect of PHC on β-arrestin-1 expression in lipopolysaccharide (LPS)-induced human pulmonary microvascular endothelial cells (HPMEC). Cultured HPMEC were pretreated with PHC, followed by LPS treatment. Muscarinic receptor mRNAs were assayed by real-time quantitative PCR. Cell viability was assayed by the methyl thiazolyl tetrazolium (MTT) conversion test. The dose and time effects of PHC on β-arrestin-1 expression in LPS-induced HPMEC were determined by Western blot analysis. Cell malondialdehyde (MDA) level and superoxide dismutase (SOD) activity were measured. It was found that the M3 receptor was the one most highly expressed, and was activated 5 min after LPS challenge. Furthermore, 2 μg/mL PHC significantly upregulated expression of β-arrestin-1 within 10 to 15 min. Compared with the control group, MDA levels in cells were remarkably increased and SOD activities were significantly decreased in LPS pretreated cells, while PHC markedly decreased MDA levels and increased SOD activities. We conclude that PHC attenuated ROS injury by upregulating β-arrestin-1 expression, thereby implicating a mechanism by which PHC may exert its protective effects against LPS-induced pulmonary microvascular endothelial cell injury.
Resumo:
Recent studies have revealed that an intrinsic apoptotic signaling cascade is involved in vascular hyperpermeability and endothelial barrier dysfunction. Propofol (2,6-diisopropylphenol) has also been reported to inhibit apoptotic signaling by regulating mitochondrial permeability transition pore (mPTP) opening and caspase-3 activation. Here, we investigated whether propofol could alleviate burn serum-induced endothelial hyperpermeability through the inhibition of the intrinsic apoptotic signaling cascade. Rat lung microvascular endothelial cells (RLMVECs) were pretreated with propofol at various concentrations, followed by stimulation with burn serum, obtained from burn-injury rats. Monolayer permeability was determined by transendothelial electrical resistance. Mitochondrial release of cytochrome C was measured by ELISA. Bax and Bcl-2 expression and mitochondrial release of second mitochondrial-derived activator of caspases (smac) were detected by Western blotting. Caspase-3 activity was assessed by fluorometric assay; mitochondrial membrane potential (Δψm) was determined with JC-1 (a potential-sensitive fluorescent dye). Intracellular ATP content was assayed using a commercial kit, and reactive oxygen species (ROS) were measured by dichlorodihydrofluorescein diacetate (DCFH-DA). Burn serum significantly increased monolayer permeability (P<0.05), and this effect could be inhibited by propofol (P<0.05). Compared with a sham treatment group, intrinsic apoptotic signaling activation - indicated by Bax overexpression, Bcl-2 downregulation, Δψm reduction, decreased intracellular ATP level, increased cytosolic cytochrome C and smac, and caspase-3 activation - was observed in the vehicle group. Propofol not only attenuated these alterations (P<0.05 for all), but also significantly decreased burn-induced ROS production (P<0.05). Propofol attenuated burn-induced RLMVEC monolayer hyperpermeability by regulating the intrinsic apoptotic signaling pathway.
Resumo:
Angiogenesis and lymphangiogenesis are thought to play a role in the pathogenesis of inflammatory bowel diseases (IBD). However, it is not understood if inflammatory lymphangiogenesis is a pathological consequence or a productive attempt to resolve the inflammation. This study investigated the effect of lymphangiogenesis on intestinal inflammation by overexpressing a lymphangiogenesis factor, vascular endothelial growth factor-C (VEGF-C), in a mouse model of acute colitis. Forty eight-week-old female C57BL/6 mice were treated with recombinant adenovirus overexpressing VEGF-C or with recombinant VEGF-C156S protein. Acute colitis was then established by exposing the mice to 5% dextran sodium sulfate (DSS) for 7 days. Mice were evaluated for disease activity index (DAI), colonic inflammatory changes, colon edema, microvessel density, lymphatic vessel density (LVD), and VEGFR-3mRNA expression in colon tissue. When acute colitis was induced in mice overexpressing VEGF-C, there was a significant increase in colonic epithelial damage, inflammatory edema, microvessel density, and neutrophil infiltration compared to control mice. These mice also exhibited increased lymphatic vessel density (73.0±3.9 vs 38.2±1.9, P<0.001) and lymphatic vessel size (1974.6±104.3 vs 1639.0±91.5, P<0.001) compared to control mice. Additionally, the expression of VEGFR-3 mRNA was significantly upregulated in VEGF-C156S mice compared to DSS-treated mice after induction of colitis (42.0±1.4 vs 3.5±0.4, P<0.001). Stimulation of lymphangiogenesis by VEGF-C during acute colitis promoted inflammatory lymphangiogenesis in the colon and aggravated intestinal inflammation. Inflammatory lymphangiogenesis may have pleiotropic effects at different stages of IBD.