5 resultados para enantioselectivity
em Scielo Saúde Pública - SP
Resumo:
In organic synthesis, lipases are the most frequently used biocatalysts. They are efficient stereoselective catalysts in the kinetic resolution of a wide variety of chiral compounds. The discovery that enzymes possess catalytic activity in organic solvents has made it possible to address the question of reaction medium influence on enzymatic specificity. Perhaps the most exciting and significant development in this emerging area is the discovery that enzyme specificity, in particular enantioselectivity, can be affected by changing from one organic solvent to another. This article discusses the scope and possible mechanistic models of this phenomenon in hydrolases, specially lipases, as well as directions of future research in the area.
Resumo:
Microbial lipases have a great potential for commercial applications due to their stability, selectivity and broad substrate specificity because many non-natural acids, alcohols or amines can be used as the substrate. Three microbial lipases isolated from Brazilian soil samples (Aspergillus niger; Geotrichum candidum; Penicillium solitum) were compared in terms of their stability and as biocatalysts in the enantioselective esterification using racemic substrates in organic medium. The lipase from Aspergillus niger showed the highest activity (18.2 U/mL) and was highly thermostable, retaining 90% and 60% activity at 50 ºC and 60 ºC after 1 hour, respectively. In organic medium, this lipase provided the best results in terms of enantiomeric excess of the (S)-active acid (ee = 6.1%) and conversion value (c = 20%) in the esterification of (R,S)-ibuprofen with 1-propanol in isooctane. The esterification reaction of the racemic mixture of (R,S)-2-octanol with decanoic acid proceeded with high enantioselectivity when lipase from Aspergillus niger (E = 13.2) and commercial lipase from Candida antarctica (E = 20) were employed.
Resumo:
The use of biocatalysts in synthetic chemistry is a conventional methodology for preparing enantiomerically enriched compounds. Despite this fact, the number of experiments in chemical teaching laboratories that demonstrate the potential of enzymes in synthetic organic chemistry is limited. We describe a laboratory experiment in which students synthesized a chiral secondary alcohol that can be used in the preparation of antidepressant drugs. This experiment was conducted by individual students as part of a Drug Synthesis course held at the Pharmacy Faculty, Lisbon University. This laboratory experiment requires six laboratory periods, each lasting four hours. During the first four laboratory periods, students synthesized and characterized a racemic ester using nuclear magnetic resonance spectroscopy and gas chromatography. During the last two laboratory periods, they performed enzymatic hydrolysis resolution of the racemic ester using Candida antarctica lipase B to yield enantiomerically enriched secondary alcohol. Students successfully prepared the racemic ester with a 70%-81% overall yield in three steps. The enzymatic hydrolysis afforded (R)- secondary alcohol with good enantioselectivity (90%-95%) and reasonable yields (10%-19%). In these experiments, students were exposed to theoretical and practical concepts of aromatic acylation, ketone reduction, esterification, and enzymatic hydrolysis.
Resumo:
Various vegetables as biological catalysts were evaluated in enantioselective reduction of carbonyl compounds. The stereoselectivity of the process was in agreement with Prelog's rule for twelve of the vegetables, whereas okra and green peppers formed anti-Prelog products. Zingiber officinale exhibited the best results with 30% conversion and 89% ee. The parameters of the reaction such as time, solvent and other substrates investigated, as well as the specie, showed good chemo- and enantioselectivity.
Resumo:
Albendazole (ABZ) is an anthelmintic drug used for the treatment of infectious diseases in veterinary and human medicine. This drug is a prochiral drug that after administration, is rapidly oxidized in the pharmacologically active sulfoxide metabolite, which is also known as ricobendazole (ABZSOX). ABZSOX has a stereogenic center and possibly two enantiomers, (+)-ABZSOX and (-)-ABZSOX. In the present work, we investigate the pH effect on the asymmetric stereoselective sulfoxidation of ABZ into ABZSOX by employing the fungi Nigrospora sphaerica, Papulaspora immera Hotson, and Mucor rouxii. The results show a possibility of obtaining the pure enantiomers of the ricobendazole drug using fungi as biocatalytic agents. The three fungi showed a high degree of enantioselectivity expressed by enantiomeric excess. In addition, M. rouxii can be used as an alternative to obtain the (+)-ABZSOX enantiomer (ee 89.8%).