7 resultados para eBook in Pharmacology

em Scielo Saúde Pública - SP


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The pharmacology of synthetic organoselenium compounds indicates that they can be used as antioxidants, enzyme inhibitors, neuroprotectors, anti-tumor and anti-infectious agents, and immunomodulators. In this review, we focus on the effects of diphenyl diselenide (DPDS) in various biological model organisms. DPDS possesses antioxidant activity, confirmed in several in vitro and in vivo systems, and thus has a protective effect against hepatic, renal and gastric injuries, in addition to its neuroprotective activity. The activity of the compound on the central nervous system has been studied since DPDS has lipophilic characteristics, increasing adenylyl cyclase activity and inhibiting glutamate and MK-801 binding to rat synaptic membranes. Systemic administration facilitates the formation of long-term object recognition memory in mice and has a protective effect against brain ischemia and on reserpine-induced orofacial dyskinesia in rats. On the other hand, DPDS may be toxic, mainly because of its interaction with thiol groups. In the yeast Saccharomyces cerevisiae, the molecule acts as a pro-oxidant by depleting free glutathione. Administration to mice during cadmium intoxication has the opposite effect, reducing oxidative stress in various tissues. DPDS is a potent inhibitor of d-aminolevulinate dehydratase and chronic exposure to high doses of this compound has central effects on mouse brain, as well as liver and renal toxicity. Genotoxicity of this compound has been assessed in bacteria, haploid and diploid yeast and in a tumor cell line.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

People customarily use the extracts of plants known to have antidiarrhoeal effects without any scientific base to explain the action of the extract. For this reason, an investigation was undertaken with a view to determining the efficacy of the effects of the brute aqueous extract (BAE) of the leaves of Psidium guajava (guava), Stachytarpheta cayenensis (bastard vervain), Polygonum punctatum (water. smartweed), Eugenia uniflora (Brazil or Surinam cherry) and Aster squamatus (zé-da-silva) on the intestinal transport of water in rats and on the gastrointestinal propulsion in mice. With the exception of the BAE of S. cayenensis, all other BAE's have increased the absorption of water in one or more intestinal portion in relation to the control group. All tested BAE, except that of P. punctatum, reduced the gastrointestinal propulsion in relation to that of the control group. The results indicate that the BAE of the leaves of P. guajava, S. cayenensis, P. punctatum, E. uniflora and A. squamatus have a potential antidiarrhoeic effect to be confirmed by additional investigations in animals infected with enteropathogenic agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuromuscular blocking agents (NMBAs) have been widely used to control patients who need to be immobilized for some kind of medical intervention, such as an invasive procedure or synchronism with mechanical ventilation. The purpose of this monograph is to review the pharmacology of the NMBAs, to compare the main differences between the neuromuscular junction in neonates, infants, toddlers and adults, and moreover to discuss their indications in critically ill pediatric patients. Continuous improvement of knowledge about NMBAs pharmacology, adverse effects, and the many other remaining unanswered questions about neuromuscular junction and neuromuscular blockade in children is essential for the correct use of these drugs. Therefore, the indication of these agents in pediatrics is determined with extreme judiciousness. Computorized (Medline 1990-2000) and active search of articles were the mechanisms used in this review.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some aspects of curare research carried out over the last 25 years are discussed. Accepting a pharmacological rather than purely ethnological definition means, that curares are not limited to South America but that they are also known from Central Africa and South-EastAsia. Among the criteria that have been suggested for classifying South American curares: type of container, geographical origin, botanical sourcesof the active, constituent!, and chemical composition. A combination of botanical and geographical criteria leads to much the same regional ;groupings a combination of criteria involving the type of container and the chemical composition. The active principles in curares may derive from members of thr Loganiaceae (Strychnos) and/or Menispermaceae mainly Chondrodendron and Curarea, but also Abuta,Anomospermum, Cissampelos, Sciadotenia, and Telitoxicum). Certain of the Strychnos dimeric indole alkaloids can undergo a variety of cleavages, oxidations, and isomerizations; hence., some of the compounds obtained by normal isolation procedures one almost certainly artefacts. The different genera of, Menispermaceae a wide range of bisbenzyl and other types of isoquinoline alkaloids. Many of the plant additives also contain a variety of isoquinoline bases, and this has to be taken into account in assessing the contribution these ingredients may make to the ovzJuxll activity of, curare. Loganiaceae-bated curares with toxiferinzas major alkaloid tend to be the most toxic. In the case of Menispermaceae-based products, there-is evidence that the process by which they are made may lead to a considerable increase in the toxicity of the finished poisons as compared with the original plant materials. The mechanism of action of the alkaloids it, outlined, and the role of curare alkaloids in the development of, present-day muscle-relaxant drugs used in surgery is indicated. Attention lb drawn to reported medicinal uses of some of the alkaloid-bearing plants incorporated into curares, suggesting that further evaluation of these plants may be of interest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The systematic screening of more than 250 molecules against Plasmodium falciparum in vitro has previously shown that interfering with phospholipid metabolism is lethal to the malaria parasite. These compounds act by impairing choline transport in infected erythrocytes, resulting in phosphatidylcholine de novo biosynthesis inhibition. A thorough study was carried out with the leader compound G25, whose in vitro IC50 is 0.6 nM. It was very specific to mature parasites (trophozoïtes) as determined in vitro with P. falciparum and in vivo with P. chabaudi -infected mice. This specificity corresponds to the most intense phase of phospholipid biosynthesis activity during the parasite cycle, thus corroborating the mechanism of action. The in vivo antimalarial activity (ED50) against P. chabaudi was 0.03 mg/kg, and a similar sensitivity was obtained with P. vinckei petteri, when the drug was intraperitoneally administered in a 4 day suppressive test. In contrast, P. berghei was revealed as less sensitive (3- to 20-fold, depending on the P. berghei-strain). This difference in activity could result either from the degree of synchronism of every strain, their invasion preference for mature or immature red blood cells or from an intrinsically lower sensitivity of the P. berghei strain to G25. Irrespective of the mode of administration, G25 had the same therapeutic index (lethal dose 50 (LD50)/ED50) but the dose to obtain antimalarial activity after oral treatment was 100-fold higher than after intraperitoneal (or subcutaneous) administration. This must be related to the low intestinal absorption of these kind of compounds. G25 succeeded to completely inhibiting parasitemia as high as 11.2% without any decrease in its therapeutic index when administered subcutaneously twice a day for at least 8 consecutive days to P. chabaudi -infected-rodent model. Transition to human preclinical investigations now requires a synthesis of molecules which would permit oral absorption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concept of anti-inflammation is currently evolving with the definition of several endogenous inhibitory circuits that are important in the control of the host inflammatory response. Here we focus on one of these pathways, the annexin 1 (ANXA1) system. Originally identified as a 37 kDa glucocorticoid-inducible protein, ANXA1 has emerged over the last decade as an important endogenous modulator of inflammation. We review the pharmacological effects of ANXA1 on cell types involved in inflammation, from blood-borne leukocytes to resident cells. This review reveals that there is scope for more research, since most of the studies have so far focused on the effects of the protein and its peptido-mimetics on neutrophil recruitment and activation. However, many other cells central to inflammation, e.g. endothelial cells or mast cells, also express ANXA1: it is foreseen that a better definition of the role(s) of the endogenous protein in these cells will open the way to further pharmacological studies. We propose that a more systematic analysis of ANXA1 physio-pharmacology in cells involved in the host inflammatory reaction could aid in the design of novel anti-inflammatory therapeutics based on this endogenous mediator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pharmacological treatment of Chagas disease with benznidazole (BNZ) is effective in children in all stages, but it is controversial in chronically infected adults. We report the pharmacokinetics and pharmacodynamics in six adult patients with Chagas disease treated with the new BNZ formulation (ABARAX®) in doses between 2.5-5.5 mg/Kg/day. All but one patient had plasmatic BNZ concentrations within the expected range. All patients finalised treatment with nondetectable Trypanosoma cruziquantitative polymerase chain reaction, which remained nondetectable at the six month follow-up. Our data suggests parasitological responses with the new BNZ and supports the hypothesis that treatment protocols with lower BNZ doses may be effective.