16 resultados para dynamic time warping
em Scielo Saúde Pública - SP
Resumo:
The application of automated correlation optimized warping (ACOW) to the correction of retention time shift in the chromatographic fingerprints of Radix Puerariae thomsonii (RPT) was investigated. Twenty-seven samples were extracted from 9 batches of RPT products. The fingerprints of the 27 samples were established by the HPLC method. Because there is a retention time shift in the established fingerprints, the quality of these samples cannot be correctly evaluated by using similarity estimation and principal component analysis (PCA). Thus, the ACOW method was used to align these fingerprints. In the ACOW procedure, the warping parameters, which have a significant influence on the alignment result, were optimized by an automated algorithm. After correcting the retention time shift, the quality of these RPT samples was correctly evaluated by similarity estimation and PCA. It is demonstrated that ACOW is a practical method for aligning the chromatographic fingerprints of RPT. The combination of ACOW, similarity estimation, and PCA is shown to be a promising method for evaluating the quality of Traditional Chinese Medicine.
Resumo:
A mathematical model for the purpose of analysing the dynamic of the populations of infected hosts anf infected mosquitoes when the populations of mosquitoes are periodic in time is here presented. By the computation of a parameter lambda (the spectral radius of a certain monodromy matrix) one can state that either the infection peters out naturally) (lambda <= 1) or if lambda > 1 the infection becomes endemic. The model generalizes previous models for malaria by considering the case of periodic coefficients; it is also a variation of that for gonorrhea. The main motivation for the consideration of this present model was the recent studies on mosquitoes at an experimental rice irrigation system, in the South-Eastern region of Brazil.
A real-time quantitative assay for hepatitis B DNA virus (HBV) developed to detect all HBV genotypes
Resumo:
Hepatitis B virus (HBV) is a major cause of chronic liver disease worldwide. Besides genotype, quantitative analysis of HBV infection is extensively used for monitoring disease progression and treatment. Affordable viral load monitoring is desirable in resource-limited settings and it has been already shown to be useful in developing countries for other viruses such as Hepatitis C virus (HCV) and HIV. In this paper, we describe the validation of a real-time PCR assay for HBV DNA quantification with TaqMan chemistry and MGB probes. Primers and probes were designed using an alignment of sequences from all HBV genotypes in order to equally amplify all of them. The assay is internally controlled and was standardized with an international HBV panel. Its efficacy was evaluated comparing the results with two other methods: Versant HBV DNA Assay 3.0 (bDNA, Siemens, NY, USA) and another real-time PCR from a reference laboratory. Intra-assay and inter-assay reproducibilities were determined and the mean of CV values obtained were 0.12 and 0.09, respectively. The assay was validated with a broad dynamic range and is efficient for amplifying all HBV genotypes, providing a good option to quantify HBV DNA as a routine procedure, with a cheap and reliable protocol.
Resumo:
INTRODUCTION: Sylvatic yellow fever (SYF) is enzootic in Brazil, causing periodic outbreaks in humans living near forest borders or in rural areas. In this study, the cycling patterns of this arbovirosis were analyzed. METHODS: Spectral Fourier analysis was used to capture the periodicity patterns of SYF in time series. RESULTS: SYF outbreaks have not increased in frequency, only in the number of cases. There are two dominant cycles in SYF outbreaks, a seven year cycle for the central-western region and a 14 year cycle for the northern region. Most of the variance was concentrated in the central-western region and dominated the entire endemic region. CONCLUSIONS: The seven year cycle is predominant in the endemic region of the disease due the greater contribution of variance in the central-western region; however, it was possible identify a 14 cycle that governs SYF outbreaks in the northern region. No periodicities were identified for the remaining geographical regions.
Resumo:
Theories on social capital and on social entrepreneurship have mainly highlighted the attitude of social capital to generate enterprises and to foster good relations between third sector organizations and the public sector. This paper considers the social capital in a specific third sector enterprise; here, multi-stakeholder social cooperatives are seen, at the same time, as social capital results, creators and incubators. In the particular enterprises that identify themselves as community social enterprises, social capital, both as organizational and relational capital, is fundamental: SCEs arise from but also produce and disseminate social capital. This paper aims to improve the building of relational social capital and the refining of helpful relations drawn from other arenas, where they were created and from where they are sometimes transferred to other realities, where their role is carried on further (often working in non-profit, horizontally and vertically arranged groups, where they share resources and relations). To represent this perspective, we use a qualitative system dynamic approach in which social capital is measured using proxies. Cooperation of volunteers, customers, community leaders and third sector local organizations is fundamental to establish trust relations between public local authorities and cooperatives. These relations help the latter to maintain long-term contracts with local authorities as providers of social services and enable them to add innovation to their services, by developing experiences and management models and maintaining an interchange with civil servants regarding these matters. The long-term relations and the organizational relations linking SCEs and public organizations help to create and to renovate social capital. Thus, multi-stakeholder cooperatives originated via social capital developed in third sector organizations produce new social capital within the cooperatives themselves and between different cooperatives (entrepreneurial components of the third sector) and the public sector. In their entrepreneurial life, cooperatives have to contrast the "working drift," as a result of which only workers remain as members of the cooperative, while other stakeholders leave the organization. Those who are not workers in the cooperative are (stake)holders with "weak ties," who are nevertheless fundamental in making a worker's cooperative an authentic social multi-stakeholders cooperative. To maintain multi-stakeholder governance and the relations with third sector and civil society, social cooperatives have to reinforce participation and dialogue with civil society through ongoing efforts to include people that provide social proposals. We try to represent these processes in a system dynamic model applied to local cooperatives, measuring the social capital created by the social cooperative through proxies, such as number of volunteers and strong cooperation with public institutions. Using a reverse-engineering approach, we can individuate the determinants of the creation of social capital and thereby give support to governance that creates social capital.
Resumo:
A surgical technique for the treatment of ununited anconeal process in dogs treated by osteotomy and dynamic distraction of the proximal part of the ulna using a linear external skeletal fixator was evaluated. In all cases the osteotomy was distracted 1mm each day after the surgery until desired distraction had been achieved. Eight dogs and 9 joints diagnosed with ununited anconeal process were treated. The success of the procedure was determined by comparing clinical signs of lameness and degree of arthrosis at the time of diagnosis to 6 months after the surgical intervention. Radiographic union occurred in 88.9% of the affected joints between 21 and 42 days after the surgical procedure. Clinically, six elbows were classified as good, two as satisfactory and one as unsatisfactory. Six months after surgery two elbows had no arthrosis, one had Grade 1, two Grade 2 and one Grade 3. It is concluded the combination of ulnar osteotomy and dynamic distraction of the olecranon by a linear external skeletal fixator is a feasible procedure for the treatment of ununited anconeal process in dogs.
Resumo:
This paper presents an approach to the solution of moving a robot manipulator with minimum cost along a specified geometric path in the presence of obstacles. The main idea is to express obstacle avoidance in terms of the distances between potentially colliding parts. The optimal traveling time and the minimum mechanical energy of the actuators are considered together to build a multiobjective function. A simple numerical example involving a Cartesian manipulator arm with two-degree-of-freedom is described.
Resumo:
The main objective of this work is to analyze the importance of the gas-solid interface transfer of the kinetic energy of the turbulent motion on the accuracy of prediction of the fluid dynamic of Circulating Fluidized Bed (CFB) reactors. CFB reactors are used in a variety of industrial applications related to combustion, incineration and catalytic cracking. In this work a two-dimensional fluid dynamic model for gas-particle flow has been used to compute the porosity, the pressure, and the velocity fields of both phases in 2-D axisymmetrical cylindrical co-ordinates. The fluid dynamic model is based on the two fluid model approach in which both phases are considered to be continuous and fully interpenetrating. CFB processes are essentially turbulent. The model of effective stress on each phase is that of a Newtonian fluid, where the effective gas viscosity was calculated from the standard k-epsilon turbulence model and the transport coefficients of the particulate phase were calculated from the kinetic theory of granular flow (KTGF). This work shows that the turbulence transfer between the phases is very important for a better representation of the fluid dynamics of CFB reactors, especially for systems with internal recirculation and high gradients of particle concentration. Two systems with different characteristics were analyzed. The results were compared with experimental data available in the literature. The results were obtained by using a computer code developed by the authors. The finite volume method with collocated grid, the hybrid interpolation scheme, the false time step strategy and SIMPLEC (Semi-Implicit Method for Pressure Linked Equations - Consistent) algorithm were used to obtain the numerical solution.
Resumo:
The objective of the present study was to validate the transit-time technique for long-term measurements of iliac and renal blood flow in rats. Flow measured with ultrasonic probes was confirmed ex vivo using excised arteries perfused at varying flow rates. An implanted 1-mm probe reproduced with accuracy different patterns of flow relative to pressure in freely moving rats and accurately quantitated the resting iliac flow value (on average 10.43 ± 0.99 ml/min or 2.78 ± 0.3 ml min-1 100 g body weight-1). The measurements were stable over an experimental period of one week but were affected by probe size (resting flows were underestimated by 57% with a 2-mm probe when compared with a 1-mm probe) and by anesthesia (in the same rats, iliac flow was reduced by 50-60% when compared to the conscious state). Instantaneous changes of iliac and renal flow during exercise and recovery were accurately measured by the transit-time technique. Iliac flow increased instantaneously at the beginning of mild exercise (from 12.03 ± 1.06 to 25.55 ± 3.89 ml/min at 15 s) and showed a smaller increase when exercise intensity increased further, reaching a plateau of 38.43 ± 1.92 ml/min at the 4th min of moderate exercise intensity. In contrast, exercise-induced reduction of renal flow was smaller and slower, with 18% and 25% decreases at mild and moderate exercise intensities. Our data indicate that transit-time flowmetry is a reliable method for long-term and continuous measurements of regional blood flow at rest and can be used to quantitate the dynamic flow changes that characterize exercise and recovery
Resumo:
We investigated the effects of aerobic training on the efferent autonomic control of heart rate (HR) during dynamic exercise in middle-aged men, eight of whom underwent exercise training (T) while the other seven continued their sedentary (S) life style. The training was conducted over 10 months (three 1-h sessions/week on a field track at 70-85% of the peak HR). The contribution of sympathetic and parasympathetic exercise tachycardia was determined in terms of differences in the time constant effects on the HR response obtained using a discontinuous protocol (4-min tests at 25, 50, 100 and 125 watts on a cycle ergometer), and a continuous protocol (25 watts/min until exhaustion) allowed the quantification of the parameters (anaerobic threshold, VO2 AT; peak O2 uptake, VO2 peak; power peak) that reflect oxygen transport. The results obtained for the S and the T groups were: 1) a smaller resting HR in T (66 beats/min) when compared to S (84 beats/min); 2) during exercise, a small increase in the fast tachycardia (D0-10 s) related to vagal withdrawal (P<0.05, only at 25 watts) was observed in T at all powers; at middle and higher powers a significant decrease (P<0.05 at 50, 100 and 125 watts) in the slow tachycardia (D1-4 min) related to a sympathetic-dependent mechanism was observed in T; 3) the VO2 AT (S = 1.06 and T = 1.33 l/min) and VO2 peak (S = 1.97 and T = 2.47 l/min) were higher in T (P<0.05). These results demonstrate that aerobic training can induce significant physiological adaptations in middle-aged men, mainly expressed as a decrease in the sympathetic effects on heart rate associated with an increase in oxygen transport during dynamic exercise.
Resumo:
Borderline hypertension (BH) has been associated with an exaggerated blood pressure (BP) response during laboratory stressors. However, the incidence of target organ damage in this condition and its relation to BP hyperreactivity is an unsettled issue. Thus, we assessed the Doppler echocardiographic profile of a group of BH men (N = 36) according to office BP measurements with exaggerated BP in the cycloergometric test. A group of normotensive men (NT, N = 36) with a normal BP response during the cycloergometric test was used as control. To assess vascular function and reactivity, all subjects were submitted to the cold pressor test. Before Doppler echocardiography, the BP profile of all subjects was evaluated by 24-h ambulatory BP monitoring. All subjects from the NT group presented normal monitored levels of BP. In contrast, 19 subjects from the original BH group presented normal monitored BP levels and 17 presented elevated monitored BP levels. In the NT group all Doppler echocardiographic indexes were normal. All subjects from the original BH group presented normal left ventricular mass and geometrical pattern. However, in the subjects with elevated monitored BP levels, fractional shortening was greater, isovolumetric relaxation time longer, and early to late flow velocity ratio was reduced in relation to subjects from the original BH group with normal monitored BP levels (P<0.05). These subjects also presented an exaggerated BP response during the cold pressor test. These results support the notion of an integrated pattern of cardiac and vascular adaptation during the development of hypertension.
Resumo:
The aim of the present study was to assess the spectral behavior of the erector spinae muscle during isometric contractions performed before and after a dynamic manual load-lifting test carried out by the trunk in order to determine the capacity of muscle to perform this task. Nine healthy female students participated in the experiment. Their average age, height, and body mass (± SD) were 20 ± 1 years, 1.6 ± 0.03 m, and 53 ± 4 kg, respectively. The development of muscle fatigue was assessed by spectral analysis (median frequency) and root mean square with time. The test consisted of repeated bending movements from the trunk, starting from a 45º angle of flexion, with the application of approximately 15, 25 and 50% of maximum individual load, to the stand up position. The protocol used proved to be more reliable with loads exceeding 50% of the maximum for the identification of muscle fatigue by electromyography as a function of time. Most of the volunteers showed an increase in root mean square versus time on both the right (N = 7) and the left (N = 6) side, indicating a tendency to become fatigued. With respect to the changes in median frequency of the electromyographic signal, the loads used in this study had no significant effect on either the right or the left side of the erector spinae muscle at this frequency, suggesting that a higher amount and percentage of loads would produce more substantial results in the study of isotonic contractions.
Resumo:
Several methods have been described to measure intraocular pressure (IOP) in clinical and research situations. However, the measurement of time varying IOP with high accuracy, mainly in situations that alter corneal properties, has not been reported until now. The present report describes a computerized system capable of recording the transitory variability of IOP, which is sufficiently sensitive to reliably measure ocular pulse peak-to-peak values. We also describe its characteristics and discuss its applicability to research and clinical studies. The device consists of a pressure transducer, a signal conditioning unit and an analog-to-digital converter coupled to a video acquisition board. A modified Cairns trabeculectomy was performed in 9 Oryctolagus cuniculus rabbits to obtain changes in IOP decay parameters and to evaluate the utility and sensitivity of the recording system. The device was effective for the study of kinetic parameters of IOP, such as decay pattern and ocular pulse waves due to cardiac and respiratory cycle rhythm. In addition, there was a significant increase of IOP versus time curve derivative when pre- and post-trabeculectomy recordings were compared. The present procedure excludes corneal thickness and error related to individual operator ability. Clinical complications due to saline infusion and pressure overload were not observed during biomicroscopic evaluation. Among the disadvantages of the procedure are the requirement of anesthesia and the use in acute recordings rather than chronic protocols. Finally, the method described may provide a reliable alternative for the study of ocular pressure dynamic alterations in man and may facilitate the investigation of the pathogenesis of glaucoma.
Resumo:
To determine the hemodynamic mechanisms responsible for the attenuated blood pressure response to mental stress after exercise, 26 healthy sedentary individuals (age 29 ± 8 years) underwent the Stroop color-word test before and 60 min after a bout of maximal dynamic exercise on a treadmill. A subgroup (N = 11) underwent a time-control experiment without exercise. Blood pressure was continuously and noninvasively recorded by infrared finger photoplethysmography. Stroke volume was derived from pressure signals, and cardiac output and peripheral vascular resistance were calculated. Perceived mental stress scores were comparable between mental stress tests both in the exercise (P = 0.96) and control (P = 0.24) experiments. After exercise, the blood pressure response to mental stress was attenuated (pre: 10 ± 13 vs post: 6 ± 7 mmHg; P < 0.01) along with lower values of systolic blood pressure (pre: 129 ± 3 vs post: 125 ± 3 mmHg; P < 0.05), stroke volume (pre: 89.4 ± 3.5 vs post: 76.8 ± 3.8 mL; P < 0.05), and cardiac output (pre: 7.00 ± 0.30 vs post: 6.51 ± 0.36 L/min; P < 0.05). Except for heart rate, the hemodynamic responses and the mean values during the two mental stress tests in the control experiment were similar (P > 0.05). In conclusion, a single bout of maximal dynamic exercise attenuates the blood pressure response to mental stress in healthy subjects, along with lower stroke volume and cardiac output, denoting an acute modulatory action of exercise on the central hemodynamic response to mental stress.
Resumo:
We previously described a selective bile duct ligation model to elucidate the process of hepatic fibrogenesis in children with biliary atresia or intrahepatic biliary stenosis. Using this model, we identified changes in the expression of alpha smooth muscle actin (α-SMA) both in the obstructed parenchyma and in the hepatic parenchyma adjacent to the obstruction. However, the expression profiles of desmin and TGF-β1, molecules known to be involved in hepatic fibrogenesis, were unchanged when analyzed by semiquantitative polymerase chain reaction (RT-PCR). Thus, the molecular mechanisms involved in the modulation of liver fibrosis in this experimental model are not fully understood. This study aimed to evaluate the molecular changes in an experimental model of selective bile duct ligation and to compare the gene expression changes observed in RT-PCR and in real-time quantitative PCR (qRT‐PCR). Twenty-eight Wistar rats of both sexes and weaning age (21-23 days old) were used. The rats were separated into groups that were assessed 7 or 60 days after selective biliary duct ligation. The expression of desmin, α-SMA and TGF-β1 was examined in tissue from hepatic parenchyma with biliary obstruction (BO) and in hepatic parenchyma without biliary obstruction (WBO), using RT-PCR and qRT‐PCR. The results obtained in this study using these two methods were significantly different. The BO parenchyma had a more severe fibrogenic reaction, with increased α-SMA and TGF-β1 expression after 7 days. The WBO parenchyma presented a later, fibrotic response, with increased desmin expression 7 days after surgery and increased α-SMA 60 days after surgery. The qRT‐PCR technique was more sensitive to expression changes than the semiquantitative method.