24 resultados para droplet epitaxy
em Scielo Saúde Pública - SP
Resumo:
The objective of this work was to evaluate the phytotoxicity of a plant vitrification solution (PVS2), and the survival of shoot tips of the sugarcane variety SP716949, after cryopreservation by droplet-vitrification. Shoot tips were precultured for 24 hours in MS medium containing 0.3 mol L-1 sucrose, and exposed to PVS2 for 0, 20 or 30 min. Shoot tips were then immersed in liquid nitrogen. Thawing was fast in concentrated sucrose solution (1.2 mol L-1). PVS2 is a nontoxic to shoot tips, which in turn are sensitive to liquid nitrogen. The best results occurred when shoot tips were maintained for up to 20 min in PVS2 solution, before freezing, with 20% survival.
Resumo:
Five hemocyte types were identified in the hemolymph of Panstrongylus megistus by phase contrast and common light microscopy using some histochemical methods. These are: Prohemocytes, small cells presenting a great nucleus/cytoplasm ratio; Plasmatocytes, the most numerous hemocytes, are polymorphic cells mainly characterized by a large amount of lysosomes; Granulocytes, hemocytes very similar to plasmatocytes which contain cytoplasmic granules and are especially rich in polysaccharides; Oenocytoids, cells presenting a small nucleus and a thick cytoplasm; they show many small round vacuoles when observed in Giemsa smears and many cytoplasmic granules under phase microscopy; Adipohemocytes, very large hemocytes, presenting many fat droplet inclusions which could correspond to free fat bodies which entered the hemolymph. Only prohemocytes and plasmatocytes can be clearly classified; all the other hemocyte types have a more ambiguous classification.
Resumo:
Leprosy is an infectious disease caused by Mycobacterium leprae that affects the skin and nerves, presenting a singular clinical picture. Across the leprosy spectrum, lepromatous leprosy (LL) exhibits a classical hallmark: the presence of a collection of M. leprae-infected foamy macrophages/Schwann cells characterised by their high lipid content. The significance of this foamy aspect in mycobacterial infections has garnered renewed attention in leprosy due to the recent observation that the foamy aspect represents cells enriched in lipid droplets (LD) (also known as lipid bodies). Here, we discuss the contemporary view of LD as highly regulated organelles with key functions in M. leprae persistence in the LL end of the spectrum. The modern methods of studying this ancient disease have contributed to recent findings that describe M. leprae-triggered LD biogenesis and recruitment as effective mycobacterial intracellular strategies for acquiring lipids, sheltering and/or dampening the immune response and favouring bacterial survival, likely representing a fundamental aspect of M. leprae pathogenesis. The multifaceted functions attributed to the LD in leprosy may contribute to the development of new strategies for adjunctive anti-leprosy therapies.
Resumo:
The main objective of this work was to compare two methods to estimate the deposition of pesticide applied by aerial spraying. Hundred and fifty pieces of water sensitive paper were distributed over an area of 50 m length by 75 m width for sampling droplets sprayed by an aircraft calibrated to apply a spray volume of 32 L/ha. The samples were analysed by visual microscopic method using NG 2 Porton graticule and by an image analyser computer program. The results reached by visual microscopic method were the following: volume median diameter, 398±62 mum; number median diameter, 159±22 mum; droplet density, 22.5±7.0 droplets/cm² and estimated deposited volume, 22.2±9.4 L/ha. The respective ones reached with the computer program were: 402±58 mum, 161±32 mum, 21.9±7.5 droplets/cm² and 21.9±9.2 L/ha. Graphs of the spatial distribution of droplet density and deposited spray volume on the area were produced by the computer program.
Resumo:
In the present paper, we report on the analytical use of a dynamic droplet based gas collection and an analysis system. A droplet formed at the tip of a tube represents a sampling approach that provides an indefinitely renewable surface and uses very little reagent. Sample gas flows past the droplet at a low flow rate. After the gas was sampled , the analysis can be carried out by different methodologies. The feasibility of the sensor is demonstrated by continuos determination of gaseous as: NO2, Cl2 and SO2.
Resumo:
A sensitive and simple system was proposed for the in situ measurement of total aldehyde in outdoor or indoor ambient. The method is based on the use of a reagent drop as an useful interface to preconcentrate the sample prior to determination of total aldehyde as formaldehyde. The drop is formed at the tip of a cylindrical tube that contains two optical fibers placed on opposite sides and in contact with the reagent solution. One optical fiber carries the red light to the drop form a light emitting diode (LED). The transmitted light is measured by a second optical fiber/photodiode system. The analytical signal is read and converted into absorbance. The reagent solution of 3-methyl-2-benzothiazoline hydrazone (MBTH) forms a blue cation during reaction with formaldehyde that can be measured at 660 nm. Some aspects of kinetics reaction formation of dye were reevaluated. The formaldehyde reacts with MBTH and forms the azine in about 12 min. The oxidation of MBTH by Fe (III) and the formation of dye requires 3 min. The absorbance of the reagent drop is proportional to the sampling time and to the analyte concentration. The absorbance signal increases with increased sample gas flow until a maximum is reached then decreases until it forms a plateau. The proposed method was evaluated using both outdoor and indoor samples, and it was shown to viable provide an accurate measure of total aldehyde.
Resumo:
Droplet counter-current chromatography, rotation locular counter-current chromatography and high-speed counter-current chromatography were applied to the preparative separation of the alkaloid ricinine from the dichloromethane extracts of Ricinus communis leaves. The solvent system used was composed of dichloromethane-methanol-water (93:35:72 v/v/v) and all techniques led to the isolation of large amounts of the alkaloid. The best result was obtained through HSCCC, since the ricinine yield was respectively 50% and 30% higher than when using RLCCC or DCCC.
Resumo:
This paper describes the adsorption of an oligothymidylate (pdT16) on nanoemulsions obtained by spontaneous emulsification procedures. Formulations were composed by medium chain triglycerides, egg lecithin, glycerol, water (NE) and stearylamine (NE SA). After optimization of operating conditions, the mean droplet size was smaller than 255 nm. Adsorption isotherms showed a higher amount of pdT16 adsorbed on cationic NE SA (60 mg/g) compared to NE (20 mg/g). pdT16 adsorption was also evidenced by the inversion of the zeta-potential of NE SA (from +50 to -30 mV) and the morphology of oil droplets examined through transmission electron microscopy. The overall results showed the role of electrostatic interactions on the adsorption of pdT16 on the oil/water interface of nanoemulsions.
Resumo:
The objective of this work was to use the high-pressure homogenizer (HPH) to prepare stable oil/water nanoemulsions presenting narrow particle size distribution. The dispersions were prepared using nonionic surfactants based on ethoxylated ether. The size and distribution of the droplets formed, along with their stability, were determined in a Zetasizer Nano ZS particle size analyzer. The stability and the droplet size distribution in these systems do not present the significant differences with the increase of the processing pressure in the HPH). The processing time can promote the biggest dispersion in the size of particles, thus reducing its stability.
Resumo:
The construction and optimization of a device that can be applied to electrochemical studies in flat micro regions are described. This was developed as an attempt to study small regions of metallic samples, whose properties may differ completely from its macroscopic behavior and for studies in highly resistive medium. Some results were obtained for individual grains of polycrystalline samples, welded regions, pure copper, platinum, glassy carbon, single crystals of Cu-Zn-Al alloy, and steel in biodiesel without electrolyte intentionally added. The device showed to be useful for the proposed purpose, allowing to be automated and has potential possibilities of other applications.
Resumo:
Nanoemulsions composed of a medium-chain triglyceride oil core stabilized by rapeseed or sunflower lecithins were prepared by spontaneous emulsification and high-pressure homogenization. These nanoemulsions are compared with formulations stabilized by egg lecithin. Nanoemulsions obtained by high-pressure homogenization display larger droplet size (230 to 440 nm) compared with those obtained by spontaneous emulsification (190 to 310 nm). The zeta potentials of the emulsions were negative and below -25 mV. Zeta potential inversion occurred between pH 3.0 and 4.0. The results demonstrate the feasibility of preparing lipid emulsions comprising rapeseed or sunflower lecithins by spontaneous emulsification and high-pressure homogenization.
Resumo:
The air included in droplets generated by spray nozzles directly int0erferes in transport, deposition and retention of the droplets after its impact on the target. The objective of this study was to analyze the interference of adjuvants in the amount of air included in droplets generated by spray nozzles. The treatments were composed by four spray solutions containing mineral oil, vegetable oil, surfactant and water, and three spray nozzles, two air induction type and one pre-orifice. The air included was calculated by the difference between the volume of spray mix (air plus liquid) and only the liquid, which was made by means of sprayed samples captured in a funnel and collected in a graduated cylinder. The surface tension was estimated by the gravimetric method using a precision scale and a graduated pipette. The surfactant provided the largest percentage of air included in the spray. For the surface tension, the mineral oil and the surfactant had the lowest values. It was concluded that the use of adjuvants had a direct influence on the percentage of air included. In addition, products with greater ability to reduce surface tension and to form homogeneous solutions provided the increase in the percentage of air included in the droplet.
Resumo:
This study defined the main adjuvant characteristics that may influence or help to understand drift formation process in the agricultural spraying. It was evaluated 33 aqueous solutions from combinations of various adjuvants and concentrations. Then, drifting was quantified by means of wind tunnel; and variables such as percentage of droplets smaller than 50 μm (V50), 100 μm (V100), diameter of mean volume (DMV), droplet diameter composing 10% of the sprayed volume (DV0.1), viscosity, density and surface tension. Assays were performed in triplicate, using Teejet XR8003 flat fan nozzles at 200 kPa (medium size droplets). Spray solutions were stained with Brilliant Blue Dye at 0.6% (m/ v). DMV, V100, viscosity cause most influence on drift hazardous. Adjuvant characteristics and respective methods of evaluation have applicability in drift risk by agricultural spray adjuvants.
Resumo:
The physical characteristics of a spray liquid are important in getting a good droplet formation and control efficiency over a particular target. As a function of these characteristics, it is possible to decipher which is the best adjuvant based on the respective concentration used during the spray. Therefore, ten spraying liquids were prepared, which varied in concentrations of pesticide lufenuron + profenofos, mineral oil, water and manganese sulfate. Pendant droplets formed from these mixtures were measured to examine their impact on surface tension. Droplets were applied to the surface of coffee leaves and the surface tension, contact angle formed and the leaf area wetted by the droplet, were measured. A smooth glass surface was taken as a comparative to the coffee leaves. The highest concentrations of oil resulted in lower surface tension, smaller contact angles of droplets on leaf surfaces and larger areas wetted by the droplets. Both surfaces showed hydrophilic behavior.
Resumo:
ABSTRACTScarlet Morning Glory is considered to be an infesting weed that affects several crops and causes serious damage. The application of chemical herbicides, which is the primary control method, requires a broad knowledge of the various characteristics of the solution and application technology for a more efficient phytosanitary treatment. Therefore this study aimed to characterize the effect of rainfall incidence on the control of Ipomoea hederifolia, considering droplet size, surface tension, contact angle of droplets formed by herbicides liquid on vegetal and artificial surfaces, associated to adjuvants and the volumetric distribution profile of the spray jet. The addition of the adjuvants to the herbicide spraying liquid improved the application quality, as it influenced the angle formed by the spray by broadening the deposition band of the spray nozzle and thus the possible distance between the nozzles on spray boom and due the changes at droplet size, which contribute to a safety application. The rainfall occurrence affected negatively the weed control with the different spraying liquids and also the dry matter weight, suggesting that the phytosanitary product applied was washed off.