25 resultados para distributed energy production
em Scielo Saúde Pública - SP
Resumo:
The objective of this work was to evaluate elephant grass (Pennisetum purpureum Schum.) genotypes for bioenergy production by direct biomass combustion. Five elephant grass genotypes grown in two different soil types, both of low fertility, were evaluated. The experiment was carried out at Embrapa Agrobiologia field station in Seropédica, RJ, Brazil. The design was in randomized complete blocks, with split plots and four replicates. The genotypes studied were Cameroon, Bag 02, Gramafante, Roxo and CNPGL F06-3. Evaluations were made for biomass production, total biomass nitrogen, biomass nitrogen from biological fixation, carbon/nitrogen and stem/leaf ratios, and contents of fiber, lignin, cellulose and ash. The dry matter yields ranged from 45 to 67 Mg ha-1. Genotype Roxo had the lowest yield and genotypes Bag 02 and Cameroon had the highest ones. The biomass nitrogen accumulation varied from 240 to 343 kg ha-1. The plant nitrogen from biological fixation was 51% in average. The carbon/nitrogen and stem/leaf ratios and the contents of fiber, lignin, cellulose and ash did not vary among the genotypes. The five genotypes are suitable for energy production through combustion.
Resumo:
The Cerrado has been the main source of firewood and charcoal in Brazil, but despite being one of the hot spots for conservation of the world's biodiversity, neither plantations of native species nor sustainable management has been adopted in the region. The aim of this work was to investigate the biomass distribution and the potential for energy production of the cerrado species. The study was conducted in a cerrado sensu stricto site at the Água Limpa Farm (15º 56'14'' S and 47º 46'08'' W) in the Cerrado Biosphere Reserve. An area of 63.54ha was divided in 20 x 50m plots and, a random sample consisting of ten of these plots, representing 1.56% of the study-site, was assessed. All woody individuals from 5 cm diameter at 30 cm above ground level were identified and measured. Each individual was felled, the twigs thinner than 3cm were discarded while the larger branches and the trunks, both with bark, were weighted separately. After that, 2.5cm transverse sections of the trunk with bark were taken at 0, 25, 50, 75 and 100% of the length. A similar sample was also taken at the base of each branch. A total of 47 species in 35 genera and 24 families were found, with an average density of 673 individuals per ha. The diameter distribution showed a reversed-J shape with 67% of the individuals up to 13cm, while the maximum diameter was 32.30cm. Seven species represented 72% of the total biomass. In general, the species with higher production per tree were among those with higher production per ha. This content was distributed by diameter classes, reaching a maximum of 2.5ton/ha between 9 to 13cm and then, decreasing to 0.96 ton/ha between 29 to 33cm diameter. Carbon sequestering was 6.2ton/ha (until the actual stage of cerrado) based on an average 50% carbon content in the dry matter. The heat combustion of the wood varied from 18,903kj/kg to 20,888kj/kg with an average of 19,942kj/kg. The smaller diameter classes fix more carbon due to the large number of small plants per ha. But, for a species that reached larger dimensions and contained individuals in all diameter classes, Vochysia thyrsoidea, one can verify an increase in carbon fixation from 1.41 kg/ha in the first class (5 to 9cm) to 138,3kg/ha in the last (25 to 33cm). That indicates that it is possible to select species that reach larger size with a higher capacity of carbon accumulation per plant. The species that reached larger dimensions, with a production per tree above average and had high calorific power values were Dalbergia miscolobium, Pterodon pubescens and Sclerolobium paniculatum. These species have potential for use in fuelwood plantations and sustainable management.
Resumo:
This manuscript shows an overview of the solid oxide fuel cell (SOFC) technology based on industrial developments. The information presented has been collected mostly at conferences that the authors attended. It is observed that several companies have been pursuing the development of the SOFC technology. Significant advances in stability and power density have raised the economic interest in this technology recently. It is revealed that the SOFC materials are essentially the same ones that have been used in the past decades, and that the two most important designs of pre-commercial SOFC prototypes are the tubular and planar ones.
Resumo:
The wastewaters from biodiesel production contain as primarily wastes sodium or potassium soaps, fatty acids, glycerin, alcohol and other contaminants. In general, these waters are chemically unsuitable for release to any water body, so, it is necessary the adoption of techniques for the treatment of this effluent. In this review, electrochemical, biological, physicochemical, and combined treatments reported for the removal of the wastewater containing pollutants come from biodiesel production have been summarized. In addition, the recovery, the reuse, the energy production and the synthesis of new compounds from the organic matter contained in this kind of effluent are also reviewed.
Resumo:
Brazil is considered a major player in relation to renewable energy sources. Since 2005, the MME have encouraged scientific and technological development to advance the hydrogen economy in the country. In this work we identified the patents based on hydrogen production filed by the INPI by evaluating the energy production in Brazil in conjunction with data held in the BNE and the prediction of hydrogen production made by the CGEE. It can be observed that the country needs substantial technological stimulation, but shows promise for producing renewable energy sources.
Resumo:
Coal, oil, natural gas, and shale gas are biomass that is formed millions of years ago. These are non-renewable and depleting, even considering the recent discovery of new sources of oil in the presalt and new technologies for the exploitation of shale deposits. Currently, these raw materials are used as a source of energy production and are also important for the production of fine chemicals. Since these materials are finite and their (oil) price is increasing, it is clear that there will be a progressive increase in the chemical industry to use renewable raw materials as a source of energy, an inevitable necessity for humanity. The major challenge for the society in the twenty first century is to unite governments, universities, research centers, and corporations to jointly act in all areas of science with one goal of finding a solution to global problems, such as conversion of biomass into compounds for the fine chemical industry.Non-renewable raw materials are used in the preparation of fuels, chemical intermediates, and derivatives for the fine chemical industry. However, their stock in nature has a finite duration, and their price is high and will likely increase with their depletion. In this scenario, the alternative is to use renewable biomass as a replacement for petrochemicals in the production of fine chemicals. As the production of biomass-based carbohydrates is the most abundant in nature, it is judicious to develop technologies for the generation of chain products (fuels, chemical intermediates, and derivatives for the fine chemicals industry) using this raw material. This paper presents some aspects and opportunities in the area of carbohydrate chemistry toward the generation of compounds for the fine chemical industry.
Resumo:
Coal, natural gas and petroleum-based liquid fuels are still the most widely used energy sources in modern society. The current scenario contrasts with the foreseen shortage of petroleum that was spread out in the beginning of the XXI century, when the concept of "energy security" emerged as an urgent agenda to ensure a good balance between energy supply and demand. Much beyond protecting refineries and oil ducts from terrorist attacks, these issues soon developed to a portfolio of measures related to process sustainability, involving at least three fundamental dimensions: (a) the need for technological breakthroughs to improve energy production worldwide; (b) the improvement of energy efficiency in all sectors of modern society; and (c) the increase of the social perception that education is a key-word towards a better use of our energy resources. Together with these technological, economic or social issues, "energy security" is also strongly influenced by environmental issues involving greenhouse gas emissions, loss of biodiversity in environmentally sensitive areas, pollution and poor solid waste management. For these and other reasons, the implementation of more sustainable practices in our currently available industrial facilities and the search for alternative energy sources that could partly replace the fossil fuels became a major priority throughout the world. Regarding fossil fuels, the main technological bottlenecks are related to the exploitation of less accessible petroleum resources such as those in the pre-salt layer, ranging from the proper characterization of these deep-water oil reservoirs, the development of lighter and more efficient equipment for both exploration and exploitation, the optimization of the drilling techniques, the achievement of further improvements in production yields and the establishment of specialized training programs for the technical staff. The production of natural gas from shale is also emerging in several countries but its production in large scale has several problems ranging from the unavoidable environmental impact of shale mining as well as to the bad consequences of its large scale exploitation in the past. The large scale use of coal has similar environmental problems, which are aggravated by difficulties in its proper characterization. Also, the mitigation of harmful gases and particulate matter that are released as a result of combustion is still depending on the development of new gas cleaning technologies including more efficient catalysts to improve its emission profile. On the other hand, biofuels are still struggling to fulfill their role in reducing our high dependence on fossil fuels. Fatty acid alkyl esters (biodiesel) from vegetable oils and ethanol from cane sucrose and corn starch are mature technologies whose market share is partially limited by the availability of their raw materials. For this reason, there has been a great effort to develop "second-generation" technologies to produce methanol, ethanol, butanol, biodiesel, biogas (methane), bio-oils, syngas and synthetic fuels from lower grade renewable feedstocks such as lignocellulosic materials whose consumption would not interfere with the rather sensitive issues of food security. Advanced fermentation processes are envisaged as "third generation" technologies and these are primarily linked to the use of algae feedstocks as well as other organisms that could produce biofuels or simply provide microbial biomass for the processes listed above. Due to the complexity and cost of their production chain, "third generation" technologies usually aim at high value added biofuels such as biojet fuel, biohydrogen and hydrocarbons with a fuel performance similar to diesel or gasoline, situations in which the use of genetically modified organisms is usually required. In general, the main challenges in this field could be summarized as follows: (a) the need for prospecting alternative sources of biomass that are not linked to the food chain; (b) the intensive use of green chemistry principles in our current industrial activities; (c) the development of mature technologies for the production of second and third generation biofuels; (d) the development of safe bioprocesses that are based on environmentally benign microorganisms; (e) the scale-up of potential technologies to a suitable demonstration scale; and (f) the full understanding of the technological and environmental implications of the food vs. fuel debate. On the basis of these, the main objective of this article is to stimulate the discussion and help the decision making regarding "energy security" issues and their challenges for modern society, in such a way to encourage the participation of the Brazilian Chemistry community in the design of a road map for a safer, sustainable and prosper future for our nation.
Resumo:
This study describes the application of the Art of Scientific and Technological Search to strategically analyze areas of technological and industrial development. Application of scientific search strategies such as the creation of Patent Landscape has been shown to be useful for writing research projects, earning grants, publishing papers, drafting patent applications, and analyzing the market and economic potentials of a previous determined subject. The Patent Landscape regards a simplified analysis of technologies concerning ionic liquids patents applied in Brazil and published by Instituto Nacional da Propriedade Industrial(INPI). A total of 93 patent applications using the keywords "ionic liquids" were found in the INPI database. Among these, 75% were nonresident applications and 25% were Brazilian resident applications. Interestingly, BASF, Chevron Industries, and the Universidade Federal do Rio Grande do Sul (UFRGS) were discovered as higher patent applicant assignees. Differences in the patent application areas were also observed between these applicants, with new solvents and petrochemical applications as the areas of focus for the industrial applications (BASF and Chevron Industries), and energy production, catalysis, and chemical reaction media as the focus for the university applications.
Resumo:
Among the alternatives to meet the increasing of world demand for energy, the use of biomass as energy source is one of the most promising as it contributes to reducing emissions of carbon dioxide in the atmosphere. Gasification is a technological process of biomass energy production of a gaseous biofuel. The fuel gas has a low calorific value that can be used in Diesel engine in dual mode for power generation in isolated communities. This study aimed to evaluate the reduction in the consumption of oil Diesel an engine generator, using gas from gasification of wood. The engine generator brand used was a BRANCO, with direct injection power of 7.36 kW (10 HP) coupled to an electric generator 5.5 kW. Diesel oil mixed with intake air was injected, as the oil was injected via an injector of the engine (dual mode). The fuel gas was produced in a downdraft gasifier. The engine generator was put on load system from 0.5 kW to 3.5 kW through a set of electrical resistances. Diesel oil consumption was measured with a precision scale. It was concluded that the engine converted to dual mode when using the gas for the gasification of wood decreased Diesel consumption by up to 57%.
Resumo:
It is generally accepted that mitochondria are able to proliferate even in postmitotic cells due to their natural turnover and also to satisfy increased cell energy requirements. However, no detailed studies are available, particularly with respect to specific cell types. Since [3H]-thymidine is incorporated not only into nuclear (n) DNA but also into the DNA of cytoplasmic mitochondria, an autoradiographic approach was developed at the light microscopy level in order to study basic questions of mitochondrial (mt) proliferation in organs of rodents in situ via the cytoplasmic incorporation of [3H]-thymidine injected into the animals 1 h before sacrifice. Experiments carried out on mice after X-irradiation showed that cytoplasmic labeling was not due to a process such as unscheduled nuclear DNA synthesis (nUDS). Furthermore, half-lives of mitochondria between 8-23 days were deduced specifically in relation to cell types. The phase of mtDNA synthesis was about 75 min. Finally, mt proliferation was measured in brain cells of mice as a function of age. While all neurons showed a decreasing extent of mtDNA synthesis during old age, nUDS decreased only in distinct cell types of the cortex and hippocampus. We conclude that the leading theories explaining the phenomenon of aging are closely related, i.e., aging is due to a decreasing capacity of nDNA repair, which leads to unrepaired nDNA damage, or to an accumulation of mitochondria with damaged mtDNA, which leads to a deficit of cellular energy production
Resumo:
The aim of the present study was to examine the feasibility of DNA microarray technology in an attempt to construct an evaluation system for determining gas toxicity using high-pressure conditions, as it is well known that pressure increases the concentration of a gas. As a first step, we used yeast (Saccharomyces cerevisiae) as the indicator organism and analyzed the mRNA expression profiles after exposure of yeast cells to nitrogen gas. Nitrogen gas was selected as a negative control since this gas has low toxicity. Yeast DNA microarray analysis revealed induction of genes whose products were localized to the membranes, and of genes that are involved in or contribute to energy production. Furthermore, we found that nitrogen gas significantly affected the transport system in the cells. Interestingly, nitrogen gas also resulted in induction of cold-shock responsive genes. These results suggest the possibility of applying yeast DNA microarray to gas bioassays up to 40 MPa. We therefore think that "bioassays" are ideal for use in environmental control and protection studies.
Resumo:
A two-phase anaerobic biodigestor was employed in order to analyze methane production with different manipueira organic loading rates. The acidogenic phase was carried out in a batch process whereas the methanogenic in an up-flow anaerobic fixed bed reactor with continuous feeding. The organic loading rates varied from 0.33 up to 8.48g of Chemical Demand Oxygen (COD)/L.day. The highest content of methane, 80.9%, was obtained with organic loading rate of 0.33g and the lowest, 56.8%, with 8.48gCOD/L.d. The highest reduction of COD, 88.89%, was obtained with organic loading rate of 2.25g and the lowest, 54.95%, with 8.48gCOD/L.d. From these data it was possible to realize that anaerobic biodigestion can be managed in at least two ways, i.e., for energy production (methane) or for organic loading reduction. The organic loading rate should be calculated as part of the purpose of the treatment to be accomplished.
Resumo:
Studies testing the High Energy Moisture Characteristic (HEMC) technique in tropical soils are still incipient. By this method, the effects of different management systems can be evaluated. This study investigated the aggregation state of an Oxisol under coffee with Brachiaria between crop rows and surface-applied gypsum rates using HEMC. Soil in an experimental area in the Upper São Francisco region, Minas Gerais, was studied at depths of 0.05 and 0.20 m in coffee rows. The treatments consisted of 0, 7, and 28 Mg ha-1 of agricultural gypsum rates distributed on the soil surface of the coffee rows, between which Brachiaria was grown and periodically cut, and compared with a treatment without Brachiaria between coffee rows and no gypsum application. To determine the aggregation state using the HEMC method, soil aggregates were placed in a Büchner funnel (500 mL) and wetted using a peristaltic pump with a volumetric syringe. The wetting was applied increasingly at two pre-set speeds: slow (2 mm h-1) and fast (100 mm h-1). Once saturated, the aggregates were exposed to a gradually increasing tension by the displacement of a water column (varying from 0 to 30 cm) to obtain the moisture retention curve [M = f (Ψ) ], underlying the calculation of the stability parameters: modal suction, volume of drainable pores (VDP), stability index (slow and fast), VDP ratio, and stability ratio. The HEMC method conferred sensitivity in quantifying the aggregate stability parameters, and independent of whether gypsum was used, the soil managed with Brachiaria between the coffee rows, with regular cuts discharged in the crop row direction, exhibited a decreased susceptibility to disaggregation.
Resumo:
As the requirement for agriculture to be environmentally suitable there is a necessity to adopt indicators and methodologies approaching sustainability. In Brazil, biodiesel addition into diesel is mandatory and soybean oil is its main source. The material embodiment determines the convergence of inputs into the crop. Moreover, the material flows are necessary for any environmental analysis. This study evaluated distinct production scenarios, and also conventional versus GMO crops, through the material embodiment and energy analysis. GMO crops demanded less indirectly applied inputs. The energy balance showed linearity with yield, whereas for EROI, the increases in input and yield were not affected.
Resumo:
The study evaluated the energy performance of pig farming integrated with maize production in mechanized no-tillage system. In this proposed conception of integration, the swine excrement is used as fertilizers in the maize crop. The system was designed involving the activities associated to the pig management and maize production (soil management, cultivation and harvest). A one-year period of analysis was considered, enabling the production of three batches of pigs and two crops of maize. To evaluate the energy performance, three indicators were created: energy efficiency, use of non-renewable resources efficiency and cost of non-renewable energy to produce protein. The energy inputs are composed by the inputs and infrastructure used by the breeding of pigs and maize production, as well as the solar energy incident on the agroecosystem. The energy outputs are represented by the products (finished pigs and maize). The results obtained in the simulation indicates that the integration improves the energy performance of pig farms, with an increase in the energy efficiency (186%) as well as in the use of the non-renewable energy resources efficiency (352%), while reducing the cost of non-renewable energy to produce protein (‑58%).