24 resultados para diffusive viscoelastic model, global weak solution, error estimate
em Scielo Saúde Pública - SP
Resumo:
Soil organic matter (SOM) plays an important role in carbon (C) cycle and soil quality. Considering the complexity of factors that control SOM cycling and the long time it usually takes to observe changes in SOM stocks, modeling constitutes a very important tool to understand SOM cycling in forest soils. The following hypotheses were tested: (i) soil organic carbon (SOC) stocks would be higher after several rotations of eucalyptus than in low-productivity pastures; (ii) SOC values simulated by the Century model would describe the data better than the mean of observations. So, the aims of the current study were: (i) to evaluate the SOM dynamics using the Century model to simulate the changes of C stocks for two eucalyptus chronosequences in the Rio Doce Valley, Minas Gerais State, Brazil; and (ii) to compare the C stocks simulated by Century with the C stocks measured in soils of different Orders and regions of the Rio Doce Valley growing eucalyptus. In Belo Oriente (BO), short-rotation eucalyptus plantations had been cultivated for 4.0; 13.0, 22.0, 32.0 and 34.0 years, at a lower elevation and in a warmer climate, while in Virginópolis (VG), these time periods were 8.0, 19.0 and 33.0 years, at a higher elevation and in a milder climate. Soil samples were collected from the 0-20 cm layer to estimate C stocks. Results indicate that the C stocks simulated by the Century model decreased after 37 years of poorly managed pastures in areas previously covered by native forest in the regions of BO and VG. The substitution of poorly managed pastures by eucalyptus in the early 1970´s led to an average increase of C of 0.28 and 0.42 t ha-1 year-1 in BO and VG, respectively. The measured C stocks under eucalyptus in distinct soil Orders and independent regions with variable edapho-climate conditions were not far from the values estimated by the Century model (root mean square error - RMSE = 20.9; model efficiency - EF = 0.29) despite the opposite result obtained with the statistical procedure to test the identity of analytical methods. Only for lower soil C stocks, the model over-estimated the C stock in the 0-20 cm layer. Thus, the Century model is highly promising to detect changes in C stocks in distinct soil orders under eucalyptus, as well as to indicate the impact of harvest residue management on SOM in future rotations.
Resumo:
The objective of this work was to compare random regression models for the estimation of genetic parameters for Guzerat milk production, using orthogonal Legendre polynomials. Records (20,524) of test-day milk yield (TDMY) from 2,816 first-lactation Guzerat cows were used. TDMY grouped into 10-monthly classes were analyzed for additive genetic effect and for environmental and residual permanent effects (random effects), whereas the contemporary group, calving age (linear and quadratic effects) and mean lactation curve were analized as fixed effects. Trajectories for the additive genetic and permanent environmental effects were modeled by means of a covariance function employing orthogonal Legendre polynomials ranging from the second to the fifth order. Residual variances were considered in one, four, six, or ten variance classes. The best model had six residual variance classes. The heritability estimates for the TDMY records varied from 0.19 to 0.32. The random regression model that used a second-order Legendre polynomial for the additive genetic effect, and a fifth-order polynomial for the permanent environmental effect is adequate for comparison by the main employed criteria. The model with a second-order Legendre polynomial for the additive genetic effect, and that with a fourth-order for the permanent environmental effect could also be employed in these analyses.
Resumo:
A hydrogel comprised of chitosan crosslinked using the low-toxicity crosslinker genipin was prepared, and the absorption of glibenclamide by the hydrogel was investigated. Optimized structures and their molecular electrostatic potentials were calculated using the AM1 method, and the results were used to evaluate the molecular interactions between the three compounds. The quantitative structure-property relationship model was also used to estimate the activity of the chemicals on the basis their molecular structures. In addition, theoretical Fourier transform infrared spectra were calculated to analyze the intermolecular interactions in the proposed system. Finally, the hydrophilicity of the hydrogel and its influence on the absorption process were also estimated.
Effect of particle morphology on the mechanical and thermo-mechanical behavior of polymer composites
Resumo:
Fiber reinforced polymer composites have been used in many applications, such as in automobile, aerospace and naval industries, due basically to their high strength-to-weight and modulus-to-weight, among other properties. Even though particles are usually not able to lead to the level of reinforcement of fibers, particle reinforced polymer composites have been proposed for many new applications due to their low cost, easy fabrication and isotropic properties. In this work, polymer composites were prepared by incorporating glass particles of different morphologies on poly(aryl sulfones) matrices. Particles with aspect ratios equal to 1, 2.5 and 10 were used. The prepared composites were characterized using electron microscopy and thermal analysis. Mechanical properties of the composites were evaluated using a four-point bending test. The thermo-mechanical behavior of the obtained composites was also investigated. The results showed that the morphology of the particles alter significantly the mechanical properties of composites. Particles with larger values of aspect ratio led to large elastic modulus but low levels of strain at failure. This result was explained by modeling the thermo-mechanical behavior of the composites using a viscoelastic model. Parameters of the model, obtained from a Cole-Cole type of plot, demonstrated that interactions at the polymer-reinforcing agent interface were higher for composites with large aspect ratio particles. Higher levels of interactions at interfaces can lead to higher degrees of stress transfer and, consequently, to composites with large elastic modulus, as experimentally observed.
Resumo:
Exposure to nitrogen oxides (NOx) emitted by burning fossil fuels has been associated with respiratory diseases. We aimed to estimate the effects of NOx exposure on mortality owing to respiratory diseases in residents of Taubaté, São Paulo, Brazil, of all ages and both sexes. This time-series ecological study from August 1, 2011 to July 31, 2012 used information on deaths caused by respiratory diseases obtained from the Health Department of Taubaté. Estimated daily levels of pollutants (NOx, particulate matter, ozone, carbon monoxide) were obtained from the Centro de Previsão de Tempo e Estudos Climáticos Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System. These environmental variables were used to adjust the multipollutant model for apparent temperature. To estimate association between hospitalizations owing to asthma and air pollutants, generalized additive Poisson regression models were developed, with lags as much as 5 days. There were 385 deaths with a daily mean (±SD) of 1.05±1.03 (range: 0-5). Exposure to NOx was significantly associated with mortality owing to respiratory diseases: relative risk (RR)=1.035 (95% confidence interval [CI]: 1.008-1.063) for lag 2, RR=1.064 (95%CI: 1.017-1.112) lag 3, RR=1.055 (95%CI: 1.025-1.085) lag 4, and RR=1.042 (95%CI: 1.010-1.076) lag 5. A 3 µg/m3 reduction in NOx concentration resulted in a decrease of 10-18 percentage points in risk of death caused by respiratory diseases. Even at NOx concentrations below the acceptable standard, there is association with deaths caused by respiratory diseases.
Resumo:
This paper analyzes People's Republic of China (PRC) economic and political ascendance in the 21st century focusing on the evolution of the sui generis economic development model and its significances of the evolution of relationship between China and the developing countries in the peripheral "Global South." The objective of this article is to analyze the relationship between China and the Global South (Africa and South America) in the 21st century, characterized as a new Center-periphery global network power based on trade and investment that we call as "Asian Consensus."
Resumo:
OBJECTIVE: Sensitivity analysis was applied to a mathematical model describing malaria transmission relating global warming and local socioeconomic conditions. METHODS: A previous compartment model was proposed to describe the overall transmission of malaria. This model was built up on several parameters and the prevalence of malaria in a community was characterized by the values assigned to them. To assess the control efforts, the model parameters can vary on broad intervals. RESULTS: By performing the sensitivity analysis on equilibrium points, which represent the level of malaria infection in a community, the different possible scenarios are obtained when the parameters are changed. CONCLUSIONS: Depending on malaria risk, the efforts to control its transmission can be guided by a subset of parameters used in the mathematical model.
Resumo:
This paper dis cusses the fitting of a Cobb-Doug las response curve Yi = αXβi, with additive error, Yi = αXβi + e i, instead of the usual multiplicative error Yi = αXβi (1 + e i). The estimation of the parameters A and B is discussed. An example is given with use of both types of error.
Resumo:
Macroporosity is often used in the determination of soil compaction. Reduced macroporosity can lead to poor drainage, low root aeration and soil degradation. The aim of this study was to develop and test different models to estimate macro and microporosity efficiently, using multiple regression. Ten soils were selected within a large range of textures: sand (Sa) 0.07-0.84; silt 0.03-0.24; clay 0.13-0.78 kg kg-1 and subjected to three compaction levels (three bulk densities, BD). Two models with similar accuracy were selected, with a mean error of about 0.02 m³ m-3 (2 %). The model y = a + b.BD + c.Sa, named model 2, was selected for its simplicity to estimate Macro (Ma), Micro (Mi) or total porosity (TP): Ma = 0.693 - 0.465 BD + 0.212 Sa; Mi = 0.337 + 0.120 BD - 0.294 Sa; TP = 1.030 - 0.345 BD 0.082 Sa; porosity values were expressed in m³ m-3; BD in kg dm-3; and Sa in kg kg-1. The model was tested with 76 datum set of several other authors. An error of about 0.04 m³ m-3 (4 %) was observed. Simulations of variations in BD as a function of Sa are presented for Ma = 0 and Ma = 0.10 (10 %). The macroporosity equation was remodeled to obtain other compaction indexes: a) to simulate maximum bulk density (MBD) as a function of Sa (Equation 11), in agreement with literature data; b) to simulate relative bulk density (RBD) as a function of BD and Sa (Equation 13); c) another model to simulate RBD as a function of Ma and Sa (Equation 16), confirming the independence of this variable in relation to Sa for a fixed value of macroporosity and, also, proving the hypothesis of Hakansson & Lipiec that RBD = 0.87 corresponds approximately to 10 % macroporosity (Ma = 0.10 m³ m-3).
Resumo:
Pedotransfer functions (PTF) were developed to estimate the parameters (α, n, θr and θs) of the van Genuchten model (1980) to describe soil water retention curves. The data came from various sources, mainly from studies conducted by universities in Northeast Brazil, by the Brazilian Agricultural Research Corporation (Embrapa) and by a corporation for the development of the São Francisco and Parnaíba river basins (Codevasf), totaling 786 retention curves, which were divided into two data sets: 85 % for the development of PTFs, and 15 % for testing and validation, considered independent data. Aside from the development of general PTFs for all soils together, specific PTFs were developed for the soil classes Ultisols, Oxisols, Entisols, and Alfisols by multiple regression techniques, using a stepwise procedure (forward and backward) to select the best predictors. Two types of PTFs were developed: the first included all predictors (soil density, proportions of sand, silt, clay, and organic matter), and the second only the proportions of sand, silt and clay. The evaluation of adequacy of the PTFs was based on the correlation coefficient (R) and Willmott index (d). To evaluate the PTF for the moisture content at specific pressure heads, we used the root mean square error (RMSE). The PTF-predicted retention curve is relatively poor, except for the residual water content. The inclusion of organic matter as a PTF predictor improved the prediction of parameter a of van Genuchten. The performance of soil-class-specific PTFs was not better than of the general PTF. Except for the water content of saturated soil estimated by particle size distribution, the tested models for water content prediction at specific pressure heads proved satisfactory. Predictions of water content at pressure heads more negative than -0.6 m, using a PTF considering particle size distribution, are only slightly lower than those obtained by PTFs including bulk density and organic matter content.
Resumo:
The objective of this work was to develop neural network models of backpropagation type to estimate solar radiation based on extraterrestrial radiation data, daily temperature range, precipitation, cloudiness and relative sunshine duration. Data from Córdoba, Argentina, were used for development and validation. The behaviour and adjustment between values observed and estimates obtained by neural networks for different combinations of input were assessed. These estimations showed root mean square error between 3.15 and 3.88 MJ m-2 d-1 . The latter corresponds to the model that calculates radiation using only precipitation and daily temperature range. In all models, results show good adjustment to seasonal solar radiation. These results allow inferring the adequate performance and pertinence of this methodology to estimate complex phenomena, such as solar radiation.
Resumo:
The objective of this study was to adapt a nonlinear model (Wang and Engel - WE) for simulating the phenology of maize (Zea mays L.), and to evaluate this model and a linear one (thermal time), in order to predict developmental stages of a field-grown maize variety. A field experiment, during 2005/2006 and 2006/2007 was conducted in Santa Maria, RS, Brazil, in two growing seasons, with seven sowing dates each. Dates of emergence, silking, and physiological maturity of the maize variety BRS Missões were recorded in six replications in each sowing date. Data collected in 2005/2006 growing season were used to estimate the coefficients of the two models, and data collected in the 2006/2007 growing season were used as independent data set for model evaluations. The nonlinear WE model accurately predicted the date of silking and physiological maturity, and had a lower root mean square error (RMSE) than the linear (thermal time) model. The overall RMSE for silking and physiological maturity was 2.7 and 4.8 days with WE model, and 5.6 and 8.3 days with thermal time model, respectively.
Resumo:
The objective of this work was to evaluate a generalized response function to the atmospheric CO2 concentration [f(CO2)] by the radiation use efficiency (RUE) in rice. Experimental data on RUE at different CO2 concentrations were collected from rice trials performed in several locations around the world. RUE data were then normalized, so that all RUE at current CO2 concentration were equal to 1. The response function was obtained by fitting normalized RUE versus CO2 concentration to a Morgan-Mercer-Flodin (MMF) function, and by using Marquardt's method to estimate the model coefficients. Goodness of fit was measured by the standard deviation of the estimated coefficients, the coefficient of determination (R²), and the root mean square error (RMSE). The f(CO2) describes a nonlinear sigmoidal response of RUE in rice, in function of the atmospheric CO2 concentration, which has an ecophysiological background, and, therefore, renders a robust function that can be easily coupled to rice simulation models, besides covering the range of CO2 emissions for the next generation of climate scenarios for the 21st century.
Resumo:
A model to estimate damage caused by gray leaf spot of corn (Cercospora zea-maydis) was developed from experimental field data gathered during the summer seasons of 2000/01 and during the second crop season [January-seedtime] of 2001, in the southwest of Goiás state. Three corn hybrids were grown over two seasons and on two sites, resulting in 12 experimental plots. A disease intensity gradient (lesions per leaf) was generated through application, three times over the season, of five different doses of the fungicide propiconazol. From tasseling onward, disease intensity on the ear leaf (El), and El - 1, El - 2, El + 1, and El + 2, was evaluated weekly. A manual harvest at the physiological ripening stage was followed by grain drying and cleaning. Finally, grain yield in kg.ha-1 was estimated. Regression analysis, performed between grain yield and all combinations of the number of lesions on each leaf type, generated thirty linear equations representing the damage function. To estimate losses caused by different disease intensities at different corn growth stages, these models should first be validated. Damage coefficients may be used in determining the economic damage threshold.
Resumo:
ABSTRACTA model to estimate yield loss caused by Asian soybean rust (ASR) (Phakopsora pachyrhizi) was developed by collecting data from field experiments during the growing seasons 2009/10 and 2010/11, in Passo Fundo, RS. The disease intensity gradient, evaluated in the phenological stages R5.3, R5.4 and R5.5 based on leaflet incidence (LI) and number of uredinium and lesions/cm2, was generated by applying azoxystrobin 60 g a.i/ha + cyproconazole 24 g a.i/ha + 0.5% of the adjuvant Nimbus. The first application occurred when LI = 25% and the remaining ones at 10, 15, 20 and 25-day intervals. Harvest occurred at physiological maturity and was followed by grain drying and cleaning. Regression analysis between the grain yield and the disease intensity assessment criteria generated 56 linear equations of the yield loss function. The greatest loss was observed in the earliest growth stage, and yield loss coefficients ranged from 3.41 to 9.02 kg/ha for each 1% LI for leaflet incidence, from 13.34 to 127.4 kg/ha/1 lesion/cm2 for lesion density and from 5.53 to 110.0 kg/ha/1 uredinium/cm2 for uredinium density.