6 resultados para diethylhexyl phthalate
em Scielo Saúde Pública - SP
Resumo:
The main purpose of this work was the qualitative study of organic compounds in landfill leachate. The samples were collected from a sanitary landfill located at Gravataí, a southern Brazilian city, that receive both, industrial and domestic refuse. The samples were submitted to solid phase extraction (SPE) with XAD-4 resin as the stationary phase. The instrumental analysis was performed by Gas Chromatography with a Mass Spectrometry Detector (GC/MSD). The compounds achieved in the SPE extracts were tentatively identified by the GC/MS library. It was found several oxygen and nitrogen compounds like carboxylic acids, ketones, amines and amides. Sulfur compounds and phthalate esters are also identified.
Resumo:
The validation of analytical methods was carried out for di-(ethylhexyl) phthalate (DEHP) and adipate (DEHA) the determination of in PVC films. The level of DEHP and DEHA in samples was determined by leaving the film in contact with n-heptane during 48 hours and analysis in a gas chromatograph (GC) equipped with a flame ionization detector and fused silica column with 5% phenylmethyl silicone in the dimensions 30 m x 0.53 mm x 2.65 mm. The results for detection and the quantification limits were smaller than the restriction limits. The recovery rates of DEHP and DEHA were, respectively, 69.10 and 75.30 %.
Resumo:
This paper reports the use of Raman and infrared techniques for the qualitative and quantitative analysis of plasticizers in polyvinylchloride (PVC) commercial films. FT-Raman marker bands were indentified for di-2-ethyl-hexyl adipate (DEHA) and di-2-ethyl-hexyl phthalate (DEHP), allowing for the rapid identification of these species in the commercial film. Quantitative analysis by FT-IR resulted in plasticizers concentrations ranging from 11 to 27% (w/w). Considering the little sample preparation and the low cost of the techniques, FT-IR and FT-Raman are viable techniques for a first assessment of plasticizers in commercial samples.
Resumo:
This work proposes a separation, recovery and reuse procedure of chemical residues with chromium. This residue was generated by the determination of oxidizable carbon in organic fertilizers samples. The Cr(VI) of the residue was reduced with ethanol and precipitated with NaOH. The Cr(OH)3 precipitate was separated and oxidized to dichromate ions with hydrogen peroxide. This solution was used another time in organic carbon determination. The uses of recycled dichromate solution were appropriated in four successive recycling. The accuracy was proven using potassium hydrogen phthalate and ten organic fertilizer samples. The organic carbon results, determined with recycled solutions, were similar the conventional solution.
Resumo:
This study investigated the levels of plasticizer endocrine disruptors (diethyl phthalate, dibutyl phthalate, and bisphenol A) in drinking water at Paraíba do Sul River region and release of these compounds from bottled water. An analytical method employing solid phase extraction and GC/MS was optimized and validated. The results showed that the method is selective, linear (r² > 0.99), precise (RSD <12%), accurate (recoveries between 62 and 105%), sensitive and robust. Applying the method, the presence of all studied pollutants in drinking water was observed for the three sampled plasticizers. These plasticizers were not found in mineral bottled water, before or after storage.
Resumo:
Poly-(vinyl chloride) (PVC) requires the addition of plasticizers - additives that give flexibility and malleability for its processing into flexible film. The most used ones are: di-(2-ethylhexyl) adipate (DEHA) and di-(2-ethylhexyl) phthalate (DEHP). Toxic effects of DEHP have been observed by several authors. Phthalates are being replaced by alternative substances in PVC flexible products, because of their possible toxicological effects. DEHA is a substitute for phthalates widely used as a plasticizer in PVC materials for involving food. Some authors have shown that the exposure to DEHA also induces toxicity. A cross-sectional study was performed to identify which fatty foods carry the possibility of contamination by DEHP and DEHA. Eighteen different foods with at least 3% (m/m) fat and the possibility of being wrapped in plastic film were determined. This study suggested that all foods were subject to contamination by DEHP and DEHA in those conditions - in decreasing consumption order of 96 to 22% in the convenience sample. New guidelines on the limits of DEHA and DEHP established by the Brazilian legislation, as additives in PVC film for packaging fatty food, are still relevant to ensure human health.