9 resultados para design of aluminium welding
em Scielo Saúde Pública - SP
Resumo:
The future of antimalarial chemotherapy is particulary alarming in view of the spread of parasite cross-resistances to drugs that are not even structurally related. Only the availability of new pharmacological models will make it possible to select molecules with novel mechanisms of action, thus delaving resistance and allowing the development of new chemotherapeutic strategies. We reached this objective in mice. Our approach is hunged on fundamental and applied research begun in 1980 to investigate to phospholipid (PL) metabolism of intraerythrocytic Plasmodium. This metabolism is abundant, specific and indispensable for the production of Plasmodium membranes. Any drug to interfere with this metabolism blocks parasitic development. The most effective interference yet found involves blockage of the choline transporter, which supplies Plasmodium with choline for the synthesis of phosphatidylcholine, its major PL, this is a limiting step in the pathway. The drug sensitivity thereshold is much lower for the parasite, which is more dependent on this metabolism than host cells. The compounds show in vitro activity against P. falciparum at 1 to 10 nM. They show a very low toxicity against a lymphblastoid cell line, demonstrating a total abscence of correlation between growth inhibition of parasites and lymphoblastoid cells. They show antimalarial activity in vivo, in the P. berghei or P. chabaudi/mouse system, at doses 20-to 100-fold lower than their in acute toxicity limit. The bioavailability of a radiolabeled form of the product seemed to be advantageous (slow blood clearance and no significant concentration in tissues). Lastly, the compounds are inexpensive to produce. They are stable and water-soluble.
Resumo:
Chagas disease control strategies strongly depend on the triatomine vector species involved in Trypanosoma cruzi transmission within each area. Here we report the results of the identification of specimens belonging to various species of Triatominae captured in Ecuador (15 species from 17 provinces) and deposited in the entomological collections of the Catholic University of Ecuador (Quito), Instituto Oswaldo Cruz (Brazil), the Natural History Museum London (UK), the London School of Hygiene and Tropical Medicine (UK), the National Institute of Hygiene (Quito), and the Vozandes Hospital (Quito). A critical review of published information and new field records are presented. We analysed these data in relation to the life zones where triatomines occur (11 life zones, excluding those over 2,200 m altitude), and provide biogeographical maps for each species. These records are discussed in terms of epidemiological significance and design of control strategies. Findings relevant to the control of the main vector species are emphasised. Different lines of evidence suggest that Triatoma dimidiata is not native to Ecuador-Peru, and that synanthropic populations of Rhodnius ecuadoriensis in southern Ecuador-northern Peru might be isolated from their sylvatic conspecifics. Local eradication of T. dimidiata and these R. ecuadoriensis populations might therefore be attainable. However, the presence of a wide variety of native species indicates the necessity for a strong longitudinal surveillance system.
Resumo:
The variety of soils in the State of Acre is wide and their chemical profiles are still not fully understood. The nature of the material of origin of these soils is indicated by the high aluminium (Al) content, commonly associated with high calcium (Ca) and magnesium (Mg) contents. The study objective was to use different methods to quantify Al in soils from toposequences formed from material of a sedimentary nature originating from the Solimões Formation, in Acre, Brazil. Trenches were opened at three distinct points in the landscape: shoulder, backslope and footslope positions. Soil samples were collected for physical, chemical, mineralogical analyses. The Al content was quantified using different methods. High Al contents were found in most of these horizons, associated with high Ca and Mg levels, representing the predominant cations in the sum of exchangeable bases. The mineralogy indicates that the soils are still in a low weathering phase, with the presence of significant quantities of 2:1 minerals. Similar Al contents were determined by the methods of NaOH titration, xylenol orange spectrometry and inductively coupled plasma optical emission spectrometry. However, no consistent data were obtained by the pyrocatechol violet method. Extraction with KCl overestimated the exchangeable Al content due to its ability to extract the non-exchangeable Al present in the smectite interlayers. It was observed that high Al contents are related to the instability of the hydroxyl-Al smectite interlayers.
Resumo:
Zorflex® activated carbon fibers (ACF), reference FM100 198B, are used before and after an oxidizing procedure with H3PO4 to study the adsorption of Pb2+. The point of zero charge was determined for the modified and unmodified fiber giving values of 2.3 and 4.3, respectively. After oxidizing the ACF, the fiber showed to have a greater Pb2+ adsorption capacity in comparison with the unmodified fiber, which is related with the acid sites increase, where lead was mainly adsorbed. Determination of the BET area was carried out by nitrogen physisorption at 77K. ACFs presented superficial areas between 1000 and 1500 m²/g showing mostly, a microporous structure. The preliminary design of an adsorbent using the modified fiber is presented where the fiber superior physicochemical properties over the unmodified one are observed.
Resumo:
For design of vertical silos walls involving the storage of bulk solids to be safe and reliable, it is important knowing the largest possible number of variables such as: flow properties, silo geometry and pattern of flow desired. In order to validate the theories of flow prediction and design of conical hoppers, the flow properties of two bulk solids were determined, the theories of Jenike's flowability and Enstad and Walker for hopper design were analyzed and the results were compared with those experimentally obtained in a reduced model of a semicircular-section silo. Results show that Enstad theory for the hopper design is adequate to occur mass flow inside the silo, and for the sizing of the discharge outlet, the Walker's theory was closer to the appropriate than Jenike's theory, which was higher around 100% than the experimental hopper outlet.
Resumo:
In this paper, the optimum design of 3R manipulators is formulated and solved by using an algebraic formulation of workspace boundary. A manipulator design can be approached as a problem of optimization, in which the objective functions are the size of the manipulator and workspace volume; and the constrains can be given as a prescribed workspace volume. The numerical solution of the optimization problem is investigated by using two different numerical techniques, namely, sequential quadratic programming and simulated annealing. Numerical examples illustrate a design procedure and show the efficiency of the proposed algorithms.
Resumo:
Liposomes (lipid-based vesicles) have been widely studied as drug delivery systems due to their relative safety, their structural versatility concerning size, composition and bilayer fluidity, and their ability to incorporate almost any molecule regardless of its structure. Liposomes are successful in inducing potent in vivo immunity to incorporated antigens and are now being employed in numerous immunization procedures. This is a brief overview of the structural, biophysical and pharmacological properties of liposomes and of the current strategies in the design of liposomes as vaccine delivery systems.
Resumo:
The recombinant heat shock protein (18 kDa-hsp) from Mycobacterium leprae was studied as a T-epitope model for vaccine development. We present a structural analysis of the stability of recombinant 18 kDa-hsp during different processing steps. Circular dichroism and ELISA were used to monitor protein structure after thermal stress, lyophilization and chemical modification. We observed that the 18 kDa-hsp is extremely resistant to a wide range of temperatures (60% of activity is retained at 80ºC for 20 min). N-Acylation increased its ordered structure by 4% and decreased its ß-T1 structure by 2%. ELISA demonstrated that the native conformation of the 18 kDa-hsp was preserved after hydrophobic modification by acylation. The recombinant 18 kDa-hsp resists to a wide range of temperatures and chemical modifications without loss of its main characteristic, which is to be a source of T epitopes. This resistance is probably directly related to its lack of organization at the level of tertiary and secondary structures.
Resumo:
In this work, bromelain was recovered from ground pineapple stem and rind by means of precipitation with alcohol at low temperature. Bromelain is the name of a group of powerful protein-digesting, or proteolytic, enzymes that are particularly useful for reducing muscle and tissue inflammation and as a digestive aid. Temperature control is crucial to avoid irreversible protein denaturation and consequently to improve the quality of the enzyme recovered. The process was carried out alternatively in two fed-batch pilot tanks: a glass tank and a stainless steel tank. Aliquots containing 100 mL of pineapple aqueous extract were fed into the tank. Inside the jacketed tank, the protein was exposed to unsteady operating conditions during the addition of the precipitating agent (ethanol 99.5%) because the dilution ratio "aqueous extract to ethanol" and heat transfer area changed. The coolant flow rate was manipulated through a variable speed pump. Fine tuned conventional and adaptive PID controllers were on-line implemented using a fieldbus digital control system. The processing performance efficiency was enhanced and so was the quality (enzyme activity) of the product.