3 resultados para densification urbaine

em Scielo Saúde Pública - SP


Relevância:

10.00% 10.00%

Publicador:

Resumo:

KSr2Nb5O15 is a ferroelectric material. The sintering process of the KSr2Nb5O15 ceramic doped with different amounts of CuO was investigated in this research. It was found that CuO is effective as promoter of the densification process of the KSN ceramic. The developed microstructures were different due to the amount of CuO and secondary phases were observed in the microstructures. However, the results of X - ray diffraction showed that only the tetragonal tungsten bronze (TTB) structure was identified in all the investigated ceramic systems. The thermal behavior of CuO and also of the CuO - KSN phase mixture was investigated by thermal analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ion exchange method was employed by means of surface modification of the glass powders of LZSA (Li2O-ZrO2-SiO2-Al2O3) system submitted to a 70wt% NaNO3/30wt% NaSO4 bath salt followed by a heat treatment. Chemical analysis by X-ray fluorescence was used to evaluate the efficiency of ion exchange, while optical dilatometry was employed to evaluate sintering of compacts. Evaluation of the structure of sintered bodies was made by scanning electron microscopy. Substitution of Li+ ions by Na+ ions on the surface of powders during heat treatments of 450 and 600 ºC for 2-10 h promoted an increase in densification of the sintered bodies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT The possibility to vary the energy matrix, thus reducing the dependency on fossil fuels, has amplified the acceptance of biomass as an alternative fuel. Despite being a cheap and renewable option and the fact that Brazil is a major producer of waste from agriculture and forestry activities, the use of these materials has barriers due to its low density and low energetic efficiency, which can raise the costs of its utilization. Biomass densification has drawn attention due to its advantage in comparison to in natura biomass due to its better physical and combustion characteristics. The objective of this paper is to evaluate the impact of biomass densification in distribution and transport costs. To reach this objective, a mathematical model was used to represent decisions at a supply chain that coordinates the purchase and sale of forestry and wood waste. The model can evaluate the options to deliver biomass through the supply chain combining demand meeting and low cost. Results point to the possibility of an economy of 60% in transport cost and a reduction of 63% in the required quantity of trucks when densified waste is used. However, costs related to the densifying process lead to an increase of total supply costs of at least 37,8% in comparison to in natura waste. Summing up, the viability of biomass briquettes industry requires a cheaper densification process.