10 resultados para deduced optical model parameters
em Scielo Saúde Pública - SP
Resumo:
OBJECTIVE: Sensitivity analysis was applied to a mathematical model describing malaria transmission relating global warming and local socioeconomic conditions. METHODS: A previous compartment model was proposed to describe the overall transmission of malaria. This model was built up on several parameters and the prevalence of malaria in a community was characterized by the values assigned to them. To assess the control efforts, the model parameters can vary on broad intervals. RESULTS: By performing the sensitivity analysis on equilibrium points, which represent the level of malaria infection in a community, the different possible scenarios are obtained when the parameters are changed. CONCLUSIONS: Depending on malaria risk, the efforts to control its transmission can be guided by a subset of parameters used in the mathematical model.
Resumo:
Intensification of agricultural production without a sound management and regulations can lead to severe environmental problems, as in Western Santa Catarina State, Brazil, where intensive swine production has caused large accumulations of manure and consequently water pollution. Natural resource scientists are asked by decision-makers for advice on management and regulatory decisions. Distributed environmental models are useful tools, since they can be used to explore consequences of various management practices. However, in many areas of the world, quantitative data for model calibration and validation are lacking. The data-intensive distributed environmental model AgNPS was applied in a data-poor environment, the upper catchment (2,520 ha) of the Ariranhazinho River, near the city of Seara, in Santa Catarina State. Steps included data preparation, cell size selection, sensitivity analysis, model calibration and application to different management scenarios. The model was calibrated based on a best guess for model parameters and on a pragmatic sensitivity analysis. The parameters were adjusted to match model outputs (runoff volume, peak runoff rate and sediment concentration) closely with the sparse observed data. A modelling grid cell resolution of 150 m adduced appropriate and computer-fit results. The rainfall runoff response of the AgNPS model was calibrated using three separate rainfall ranges (< 25, 25-60, > 60 mm). Predicted sediment concentrations were consistently six to ten times higher than observed, probably due to sediment trapping along vegetated channel banks. Predicted N and P concentrations in stream water ranged from just below to well above regulatory norms. Expert knowledge of the area, in addition to experience reported in the literature, was able to compensate in part for limited calibration data. Several scenarios (actual, recommended and excessive manure applications, and point source pollution from swine operations) could be compared by the model, using a relative ranking rather than quantitative predictions.
Resumo:
The objective of this work was to identify factors associated with the 56-day non-return rate (56-NRR) in dairy herds in the Galician region, Spain, and to estimate it for individual Holstein bulls. The experiment was carried out in herds originated from North-West Spain, from September 2008 to August 2009. Data of the 76,440 first inseminations performed during this period were gathered. Candidate factors were tested for their association with the 56-NRR by using a logistic model (binomial). Afterwards, 37 sires with a minimum of 150 first performed inseminations were individually evaluated. Logistic models were also estimated for each bull, and predicted individual 56-NRR rate values were calculated as a solution for the model parameters. Logistic regression found four major factors associated with 56-NRR in lactating cows: age at insemination, days from calving to insemination, milk production level at the time of insemination, and herd size. First-service conception rate, when a particular sire was used, was higher for heifers (0.71) than for lactating cows (0.52). Non-return rates were highly variable among bulls. Asignificant part of the herd-level variation of 56-NRR of Holstein cattle seems attributable to the service sire. High correlation level between observed and predicted 56-NRR was found.
Resumo:
Glycerol, a co-product of biodiesel production, was used as a carbon source for the kinetics studies and production of biosurfactants by P. aeruginosa MSIC02. The highest fermentative parameters (Y PX = 3.04 g g-1; Y PS = 0.189 g g-1, P B = 31.94 mg L-1 h-1 and P X = 10.5 mg L-1 h-1) were obtained at concentrations of 0.4% (w/v) NaNO3 and 2% (w/v) glycerol. The rhamnolipid exhibited 80% of emulsification on kerosene, surface tension of 32.5 mN m-1, CMC = 28.2 mg L-1, C20 (concentration of surfactant in the bulk phase that produces a reduction of 20 dyn/cm in the surface tension of the solvent) = 0.99 mg L-1, Γm (surface concentration excess) = 2.4 x 10-26 mol Å-2 and S (surface area) = 70.4 Ų molecule-1 with solutions containing 10% NaCl. A mathematical model based on logistic equation was considered to representing the process. Model parameters were estimated by non-linear regression method. This approach was able to give a good description of the process.
Resumo:
The objective of this work was to develop and validate a mathematical model to estimate the duration of cotton (Gossypium hirsutum L. r. latifolium hutch) cycle in the State of Goiás, Brazil, by applying the method of growing degree-days (GD), and considering, simultaneously, its time-space variation. The model was developed as a linear combination of elevation, latitude, longitude, and Fourier series of time variation. The model parameters were adjusted by using multiple-linear regression to the observed GD accumulated with air temperature in the range of 15°C to 40°C. The minimum and maximum temperature records used to calculate the GD were obtained from 21 meteorological stations, considering data varying from 8 to 20 years of observation. The coefficient of determination, resulting from the comparison between the estimated and calculated GD along the year was 0.84. Model validation was done by comparing estimated and measured crop cycle in the period from cotton germination to the stage when 90 percent of bolls were opened in commercial crop fields. Comparative results showed that the model performed very well, as indicated by the Pearson correlation coefficient of 0.90 and Willmott agreement index of 0.94, resulting in a performance index of 0.85.
Effect of particle morphology on the mechanical and thermo-mechanical behavior of polymer composites
Resumo:
Fiber reinforced polymer composites have been used in many applications, such as in automobile, aerospace and naval industries, due basically to their high strength-to-weight and modulus-to-weight, among other properties. Even though particles are usually not able to lead to the level of reinforcement of fibers, particle reinforced polymer composites have been proposed for many new applications due to their low cost, easy fabrication and isotropic properties. In this work, polymer composites were prepared by incorporating glass particles of different morphologies on poly(aryl sulfones) matrices. Particles with aspect ratios equal to 1, 2.5 and 10 were used. The prepared composites were characterized using electron microscopy and thermal analysis. Mechanical properties of the composites were evaluated using a four-point bending test. The thermo-mechanical behavior of the obtained composites was also investigated. The results showed that the morphology of the particles alter significantly the mechanical properties of composites. Particles with larger values of aspect ratio led to large elastic modulus but low levels of strain at failure. This result was explained by modeling the thermo-mechanical behavior of the composites using a viscoelastic model. Parameters of the model, obtained from a Cole-Cole type of plot, demonstrated that interactions at the polymer-reinforcing agent interface were higher for composites with large aspect ratio particles. Higher levels of interactions at interfaces can lead to higher degrees of stress transfer and, consequently, to composites with large elastic modulus, as experimentally observed.
Resumo:
OBJECTIVE: Describe the overall transmission of malaria through a compartmental model, considering the human host and mosquito vector. METHODS: A mathematical model was developed based on the following parameters: human host immunity, assuming the existence of acquired immunity and immunological memory, which boosts the protective response upon reinfection; mosquito vector, taking into account that the average period of development from egg to adult mosquito and the extrinsic incubation period of parasites (transformation of infected but non-infectious mosquitoes into infectious mosquitoes) are dependent on the ambient temperature. RESULTS: The steady state equilibrium values obtained with the model allowed the calculation of the basic reproduction ratio in terms of the model's parameters. CONCLUSIONS: The model allowed the calculation of the basic reproduction ratio, one of the most important epidemiological variables.
Resumo:
Cry11Bb is an insecticidal crystal protein produced by Bacillus thuringiensis subsp. medellin during its stationary phase; this ¶-endotoxin is active against dipteran insects and has great potential for mosquito borne disease control. Here, we report the first theoretical model of the tridimensional structure of a Cry11 toxin. The tridimensional structure of the Cry11Bb toxin was obtained by homology modelling on the structures of the Cry1Aa and Cry3Aa toxins. In this work we give a brief description of our model and hypothesize the residues of the Cry11Bb toxin that could be important in receptor recognition and pore formation. This model will serve as a starting point for the design of mutagenesis experiments aimed to the improvement of toxicity, and to provide a new tool for the elucidation of the mechanism of action of these mosquitocidal proteins.
Resumo:
Trypanosoma cruzi infection has a large public health impact in Latin American countries. Although the transmission rates via blood transfusions and insect vectors have declined sharply in the past 20 years due to policies of the Southern Cone countries, a large number of people are still at risk for infection. Currently, no accepted experimental model or descriptions of the clinical signs that occur during the course of acute murine infection are available. The aim of this work was to use non-invasive methods to evaluate the clinical signs of Balb/c mice infected with the Y strain of T. cruzi. The infected mice displayed evident clinical changes beginning in the third week of infection. The mice were evaluated based on physical characteristics, spontaneous activity, exploratory behaviour and physiological alterations. We hope that the results presented in this report provide parameters that complement the effective monitoring of trypanocidal treatment and other interventions used to treat experimental Chagas disease.
Resumo:
The Bartlett-Lewis Rectangular Pulse Modified (BLPRM) model simulates the precipitous slide in the hourly and sub-hourly and has six parameters for each of the twelve months of the year. This study aimed to evaluate the behavior of precipitation series in the duration of 15 min, obtained by simulation using the model BLPRM in situations: (a) where the parameters are estimated from a combination of statistics, creating five different sets; (b) suitability of the model to generate rain. To adjust the parameters were used rain gauge records of Pelotas/RS/Brazil, which statistics were estimated - mean, variance, covariance, autocorrelation coefficient of lag 1, the proportion of dry days in the period considered. The results showed that the parameters related to the time of onset of precipitation (λ) and intensities (μx) were the most stable and the most unstable were ν parameter, related to rain duration. The BLPRM model adequately represented the mean, variance, and proportion of the dry period of the series of precipitation lasting 15 min and, the time dependence of the heights of rain, represented autocorrelation coefficient of the first retardation was statistically less simulated series suitability for the duration of 15 min.