79 resultados para decomposition mechanism
em Scielo Saúde Pública - SP
Resumo:
ABSTRACT The objective of this work was to evaluate the dynamics of decomposition process of chopped secondary forest system, previously enriched with legumes Inga velutina Willd. and Stryphnodendron pulcherrimum (Willd.) Hochr. and the contribution of this process to the nutrient input to the cultivation of corn and bean under no-tillage. The experimental design was a randomized block, split plot with four replications. The plots were two species (I. velutina and S. pulcherrimum) and the subplots were seven times of evaluation (0, 7, 28, 63, 189, 252, 294 days after experiment installation). There was no difference (p ≥ 0.05) between the secondary forest systems enriched and no interaction with times for biomass waste, decomposition constant and half-life time. The waste of S. pulcherrimum trees had higher (p < 0.05) C/N ratio than that I. velutina. However, this one was higher (p < 0.05) in lignin content. Nevertheless, the dynamics of residue decomposition was similar. The corn yield was higher (p < 0.05) in cultivation under I.velutina waste. Meanwhile, the beans planted after corn, shows similar (p > 0.05) yield in both areas, regardless of the waste origin.
Resumo:
This review discusses experimental evidences that indicate the IgE participation on the effector mechanisms that leads to gastrointestinal nematode elimination. Data discussed here showed that, for most experimental models, the immune response involved in nematode elimination is regulated by Th-2 type cytokines (especially IL-4). However, the mechanism(s) that result in worm elimination is not clear and might be distinct in different nematode species. Parasite specific IgE production, especially the IgE produced by the intestinal mucosae or associated lymphoid organs could participate in the intestinal elimination of Trichinella spiralis from infected rats. Intestinal IgE may also be important to the protective mechanism developed against other gastrointestinal nematodes that penetrate the murine duodenum mucosa tissue, such as Strongyloides venezuelensis and Heligmosomoides polygyrus. At least in Trichinella spiralis infected rats, the results indicated that intestinal IgE might work independently from mast cell degranulation for worm elimination.
Resumo:
Iron is an essential growth element of virtually all microorganisms and its restriction is one of the mechanisms used by macrophages to control microbial multiplication. Paracoccidioides brasiliensis, the agent of paracoccidioidomycosis, an important systemic mycosis in Latin America, is inhibited in its conidia-to-yeast conversion in the absence of iron. We studied the participation of iron in the nitric oxide (NO)-mediated fungicidal mechanism against conidia. Peritoneal murine macrophages activated with 50U/mL of IFN-gamma or treated with 35 µM Deferoxamine (DEX) and infected with P. brasiliensis conidia, were co-cultured and incubated for 96 h in the presence of different concentrations of holotransferrin (HOLO) and FeS0(4). The supernatants were withdrawn in order to assess NO2 production by the Griess method. The monolayers were fixed, stained and observed microscopically. The percentage of the conidia-to-yeast transition was estimated by counting 200 intracellular propagules. IFN-gamma-activated or DEX-treated Mthetas presented marked inhibition of the conidia-to-yeast conversion (19 and 56%, respectively) in comparison with non-activated or untreated Mthetas (80%). IFN-gamma-activated macrophages produced high NO levels in comparison with the controls. Additionally, when the activated or treated-macrophages were supplemented with iron donors (HOLO or FeSO4), the inhibitory action was reversed, although NO production remained intact. These results suggest that the NO-mediated fungicidal mechanism exerted by IFN-gamma-activated macrophages against P. brasiliensis conidia, is dependent of an iron interaction.
Resumo:
Canine brains infected with rabies virus were submitted to decomposition by being left at room temperature of 25 to 29oC for up to 168h. At 24h intervals, brain fragments were analyzed by immunofluorescence (IF) and by the mouse intracerebral inoculation (MI) test to confirm the diagnosis of rabies and to measure the putrefaction effect on the accuracy of the diagnosis. Forty eight h after the beginning of the experiment, the MI test showed signs of impairment with four negative results, while after 72h, 100% of the results were negative to the MI test and only one result was negative to the IF test, indicating that the threshold period for accurate diagnosis is 24 to 48h before putrefaction. The authors recommend the shipment of suspected cases of rabies to the laboratory for confirmation, but the use of putrid materials for diagnosis is meaningless because of false-negative results.
Resumo:
This study describes the aerobic and anaerobic decay of soluble carbohydrates (CH) and polyphenols (PH) during decomposition of Montrichardia arborescens. Plant and water samples were collected in the Cantá stream (2º 49' 11" N and 60º 40' 24" W), Roraima, Brazil. Decomposition chambers with plant fragments and stream water were incubated. Particulate organic matter was separated from dissolved organic matter and concentrations of CH and PH were determined. The results were fitted to 1st order kinetics models. CH and PH comprised a labile fraction (LCH and LPH) and a refractory fraction (RCH and RPH). The global coefficient associated with LCH weight loss was 1.4 times higher under aerobic conditions (3.4 day-1) higher than for anaerobic conditions. On the other hand, the RCH decay rate in the anaerobic process (0.0074 day-1) was 1.39 times higher. LCH was estimated to be 92% while RCH amounted to 8%. The LPH anaerobic decay was 5.2 times the value for the aerobic decay (0.67 day-1). For both conditions, RPH decay coefficients were similar (» 0.011 day-1). In the aerobic experiments LPH and RPH corresponded to 92.5% and 7.5%, respectively. For the anaerobic process these contents were 85.5% and 14.5%, respectively. From these results, we concluded that in the Cantá stream, the anaerobic degradation of phenols is more efficient than the aerobic counterpart. The aerobic condition provides a faster decay of carbohydrates of this plant.
Resumo:
OBJECTIVE: Parasympathetic dysfunction is an independent risk factor in individuals with coronary artery disease, and cholinergic stimulation is a potential therapeutical option. We determined the effects of pyridostigmine bromide, a reversible anticholinesterase agent, on electrocardiographic variables of healthy individuals. METHODS: We carried out a cross-sectional, double blind, randomized, placebo-controlled study. We obtained electrocardiographic tracings in 12 simultaneous leads of 10 healthy young individuals at rest before and after oral administration of 45 mg of pyridostigmine or placebo. RESULTS: Pyridostigmine increased RR intervals (before: 886±27 ms vs after: 1054±37 ms) and decreased QTc dispersion (before: 72±9ms vs after: 45±3ms), without changing other electrocardiographic variables (PR segment, QT interval, QTc, and QT dispersion). CONCLUSION: Bradycardia and the reduction in QTc dispersion induced by pyridostigmine may effectively represent a protective mechanism if these results can be reproduced in individuals with cardiovascular diseases.
Resumo:
OBJECTIVE: To evaluate elastic properties of conduit arteries in asymptomatic patients who have severe chronic aortic regurgitation. METHODS: Twelve healthy volunteers aged 30±1 years (control group) and 14 asymptomatic patients with severe aortic regurgitation aged 29±2 years and left ventricular ejection fraction of 0.61±0.02 (radioisotope ventriculography) were studied. High-resolution ultrasonography was performed to measure the systolic and diastolic diameters of the common carotid artery. Simultaneous measurement of blood pressure enabled the calculation of arterial compliance and distensibility. RESULTS: No differences were observed between patients with aortic regurgitation and the control group concerning age, sex, body surface, and mean blood pressure. Pulse pressure was significantly higher in the aortic regurgitation group compared with that in the control group (78±3 versus 48±1mmHg, P<0.01). Arterial compliance and distensibility were significantly greater in the aortic regurgitation group compared with that in the control group (11.0±0.8 versus 8.1±0.7 10-10 N-1 m4, P=0.01 e and 39.3±2.6 versus 31.1±2.0 10-6 N-1 m², P=0.02, respectively). CONCLUSION: Patients with chronic aortic regurgitation have increased arterial distensibility. Greater vascular compliance, to lessen the impact of systolic volume ejected into conduit arteries, represents a compensatory mechanism in left ventricular and arterial system coupling.
Resumo:
OBJECTIVE: To study the mechanism by which poly-L-arginine mediates endothelium-dependent relaxation. METHODS: Vascular segments with and without endothelium were suspended in organ chambers filled with control solution maintained at 37ºC and bubbled with 95% O2 / 5% CO2. Used drugs: indomethacin, acetycholine, EGTA, glybenclamide, ouabain, poly-L-arginine, methylene blue, N G-nitro-L-arginine, and verapamil and N G-monomethyl-L-arginine. Prostaglandin F2á and potassium chloride were used to contract the vascular rings. RESULTS: Poly-L-arginine (10-11 to 10-7 M) induced concentration-dependent relaxation in coronary artery segments with endothelium. The relaxation to poly-L-arginine was attenuated by ouabain, but was unaffected by glybenclamide. L-NOARG and oxyhemoglobin caused attenuation, but did not abolish this relaxation. Also, the relaxations was unaffected by methylene blue, verapamil, or the presence of a calcium-free bathing medium. The endothelium-dependent to poly-L-arginine relaxation was abolished only in vessels contracted with potassium chloride (40 mM) in the presence of L-NOARG and indomethacin. CONCLUSION: These experiments indicate that poly-L-arginine induces relaxation independent of nitric oxide.
Resumo:
In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.
Resumo:
Infective stages of Leishmania (Leishmania) amazonensis, capable of producing amastigote infections in hamster skin, were shown to be present in the experimentally infected sandfly vector Lutzomyia flaviscutellata 15, 25, 40, 49, 70, 96 and 120 hours after the flies had received their infective blood-meal. Similarly, infective stages of Leishmania (L.) chagasi were demonstrated in the experimentally infected vector Lu. longipalpis examined 38, 50, 63, 87, 110, 135, 171 and 221 hours following the infective blood-meal, by the intraperitoneal inoculation of the flagellates into hamsters. The question of whether or not transmission by the bite of the sandfly is dependent on the presence of [quot ]metacyclic[quot ] promastigotes in the mouthparts of the vector is discussed.
Resumo:
This paper reports recent observations from our laboratory dealing with the anti-schistosome drugs hycanthone (HC) and praziquantel (PZQ). In particular, we discuss a laboratory model of drug resistance to HC in Schistosoma mansoni and show that drug sensitive and resistant lines of the parasite can be differentiated on the basis of restriction fragment length polymorphisms using homologous ribosomal gene probes. In addition, we summarize data demonstrating that effective chemotherapy of S. mansoni infection with PZQ in mice requires the presence of host anti-parasite antibodies. These antibodies bind to PZQ treated worms and may be involved in an antibody-dependent cellular cytotoxicity reactions which result in the clearance of worms from the vasculature.
Resumo:
Megazol (CL 64,855) a very effective drug in experimental infections by Trypanosoma cruzi, and also in in vitro assays with vertebrate forms of the parasite, had its parasite, had its activity upon macromolecule biosynthesis tested using tissue culture-derived amastigote forms. Megazol presented a drastic inhibition of [3H]-uridine incorporation, suggesting a selective activity upon protein synthesis. Comparing the three drugs, megazol was more potent than nifurtimox and benznidazole in inhibiting protein an DNA synthesis. Megazol showed a 91% of inhibition of [3H]-leucine incorporation whereas nifurtimox and benznidazole, 0% and 2%, respectively. These latter two drugs inhibited the incorporation of all the precursors tested at similar levels, but the concentration of benznidazole was always three times higher, suggesting different mechanisms of action or, more probably, a greater efficiency of the 5-nitrofuran derivate in relation to the 2-nitroimidazole. So, wes conclude that the mode of action of megazol is different from the ones of nifurtimox and benznidazole and that its primary effect is associated with an impairment of protein synthesis.
Resumo:
In rats pre-but not post-training ip administration of either flumazenil, a central benzodiazepine (BSD) receptor antagonist, or of n-butyl-B-carboline-carboxylate (BCCB), an inverse agonist, enhanced retention of inhibitory avoidance learning. Flumazenil vlocked the enhancing effect of BCCB, and the inhibitory effect of the BZD agonists clonazepam and diazepam also given pre-training. Post-training administration of these drugs had no effects. The peripheral BZD receptor agonist/chloride channel blocker Ro5-4864 had no effect on the inhibitory avoidance task when given ip prior to training, buth it caused enhancement when given immediately post-training either ip or icv. This effect was blocked by PK11195, a competitive antagonist of Ro5-4864. These results suggest that ther is an endogenous mechanism mediated by BZD agonists, which is sensitive to inverse agonists and that normally down-regulates the formation of memories through a mechanism involving GABA-A receptors and the corresponding chloride channels. The most likely agonists for the endogenous mechanism suggested are the diazepam-like BZDs found in brain whose origin is possibly alimentary. Levels of these BZDs in the cortex were found to sharply decrease after inhibitory acoidance training or mere exposure to the training apparatus.
Resumo:
In this study the hepatic lipoprotein lipase (LPL), activity was evaluated in adult female mice acclimatized at 5-C and submitted to carbon tetrachloride (CCI) or ethionine, in order to determine the possible role of this enzuyme in the fatty liver. The results were compared with those obtained in mice kept at room temperature (27-C) that the same hepatoesteatosis inducing agent. In contrast to animals kept at room temperature, in cold aclimatized mice neither the enhancement of the LPL-liver activity by the action of CCI or ethionine occurred nor the development of fatty infiltration in the liver was observed. We conclude that the low temperature induced a protective effect against CCI or ethionine-induced fatty liver that was correlated with the no-increase of the hepatic LPL activity.