14 resultados para contradiction

em Scielo Saúde Pública - SP


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper the author describes a very interesting case of union of two homologous chromosomes of the scorpion Tityus bahiensis just by the opposite extremities. The two normal pairs of chromosomes behave as ordinarily, the members of each pair showing at times a slight disturbance in their regular parallelism. The complex chromosome, on the contrary, behaves itself as if it were devoid of kinetochores, that is, it does not orient like normal chromosomes nor reveal any kind of active movement. The fusion of the chromosomes has resulted from terminal breakage at the opposite ends, the correspondig fragments having been found unpaired in a cell in which two pairs of chromosomes were present. Consequently, the compound chromosome, like the normal ones, is provided with a kinetochore at each one of the free ends. Being thus a centric chromosome its behavior, or more exactly, its kinetic inactivity may be compared with that of the monovalents found elsewhere in meioses. It is due o the failure of a partner. The fusion of two homologous chromosomes has transformed them into a new chromosomal unit in whose corresponding parts the ability of pairing was entirely abolished. This result is in full contradiction with the theory of a point-to point attraction between homologous chromosomes attributed to particular power of the genes, since, if genes really exist, being placed in their original loci, they would promote the union side by side of the members of the compound chromosome. If an attraction loci-to-loci should prevail the compound chromosome would be bent as in Fig. 8, C or form a ring similar to the loops observed in the inverted segment of sailvary chromosomes of Drosophila, as represented in the Fig. 8, D and this, in accordance with the order of the loci resulting from an union of corresponding or opposite ends of the fused chromosomes, as indicated in the Fig, 8 A and B. The evidence in hand points to a fusion by non homologous extremities. The expected rings, however, have never been found in metaphase plates. From this fact the author concludes that there is no point-to-point attraction between chromosomes, a conclusion in full agreement with the behavior of Hemipteran chromosomes which, in spite of geing composed of two equivalent halves do not bend in order to adjust the corresponding loci. (Cf. the papers on Hemiptera published by the author in this volume).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The A. studies critically the literature on D. caudispina (Molin, 1858) and concludes that it is a good species, differing from D. gracilis (Rudolphi, 1809), principally, by the longer spicule. This conclusion is confirmed by the study of material collected by d'Almeida in the abdominal cavity of one specimen of Ateles paniscus (L.), of the State of Pará, Brazil. In contradiction to Stiles & Hassall's opinion the A. indicates this monkey for host-type of the Molin's species. A synonymic list and a redescription of D. caudispina are given.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

α-glycerophosphate dehydrogenase (α-GPDH-EC.1.1.1.8) has been considered absent in Trypanosoma cruzi in contradiction with all other studied trypanosomatids. After observing that the sole malate dehydrogenase can not maintain the intraglycosomal redox balance, GPDH activity was looked for and found, although in very variable levels, in epimastigotes extracts. GPDH was shown to be exclusively located in the glycosome of T. cruzi by digitonin treatment and isopycnic centrifugation. Antibody against T. brucei GPDH showed that this enzyme seemed to be present in an essentially inactive form at the beginning of the epimastigotes growth. GPDH is apparently linked to a salicylhydroxmic-sensitive glycerophosphate reoxidizing system and plays an essential role in the glycosome redox balance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The characterisation of the gene encoding Trypanosoma cruzi CL Brener phosphofructokinase (PFK) and the biochemical properties of the expressed enzyme are reported here. In contradiction with previous reports, the PFK genes of CL Brener and YBM strain T. cruzi were found to be similar to their Leishmania mexicana and Trypanosoma brucei homologs in terms of both kinetic properties and size, with open reading frames encoding polypeptides with a deduced molecular mass of 53,483. The predicted amino acid sequence contains the C-terminal glycosome-targeting tripeptide SKL; this localisation was confirmed by immunofluorescence assays. In sequence comparisons with the genes of other eukaryotes, it was found that, despite being an adenosine triphosphate-dependent enzyme, T. cruzi PFK shows significant sequence similarity with inorganic pyrophosphate-dependent PFKs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This qualitative study analyzed, from the teacher’s perspective, if the principle of comprehensiveness is included in child healthcare teaching in nursing education. The participants were 16 teachers involved in teaching child healthcare in eight undergraduate nursing programs. Data collection was performed through interviews that were submitted to thematic content analysis. The theory in teaching incorporates comprehensive care, as it is based on children’s epidemiological profile, child healthcare policies and programs, and included interventions for the promotion/prevention/rehabilitation in primary health care, hospitals, daycare centers and preschools. The comprehensive conception of health-disease process allows for understanding the child within his/her family and community. However, a contradiction exists between what is proposed and what is practiced, because the teaching is fragmented, without any integration among disciplines, with theory dissociated from practice, and isolated practical teaching that compromises the incorporation of the principle of comprehensiveness in child healthcare teaching.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper deals with the factors which enabled N. A. Vasiliev to put forward in 1910 - 12 the idea of logics free of the laws of contradiction and excluded middle, the idea of metalogic and to construct his imaginary logic as novel non-classical system. It is shown that background of Vasiliev's ideas lies deeply in Russia's culture and particular approach to logical discourse. Several Russian scholars expressed ideas similar to Vasiliev's though not in such explicit form. This period might be called the prehistory of paraconsistency. Real history of paraconsistency starts with N.C.A. da Costa's works.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Any inconsistent theory whose underlying logic is classical encompasses all the sentences of its own language. As it denies everything it asserts, it is useless for explaining or predicting anything. Nevertheless, paraconsistent logic has shown that it is possible to live with contradictions and still avoid the collapse of the theory. The main point of this paper is to show that even if it is formally possible to isolate the contradictions and to live with them, this cohabitation is neither desired by working scientists not desirable for the progress of science. Several cases from the recent history of physics and cosmology are analyzed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mc Taggart's celebrated proof of the unreality of time is a chain of implications whose final step asserts that the A-series (i.e. the classification of events as past, present or future) is intrinsically contradictory. This is widely believed to be the heart of the argument, and it is where most attempted refutations have been addressed; yet, it is also the only part of the proof which may be generalised to other contexts, since none of the notions involved in it is specifically temporal. In fact, as I show in the first part of the paper, McTaggart's refutation of the A-series can be easily interpreted in mathematical terms; subsequently, in order to strengthen my claim, I apply the same framework by analogy to the cases of space, modality, and personal identity. Therefore, either McTaggart's proof as a whole may be extended to each of these notions, or it must embed some distinctly temporal element in one of the steps leading up to the contradiction of the A-series. I conclude by suggesting where this element might lay, and by hinting at what I believe to be the true logical fallacy of the proof.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the paper I tackle a puzzle by Goldberg (2009) that challenges all of us as philosophers. There are three plausible thesis, separately defensible, that together seem to lead to a contradiction: 1) Reliability is a necessary condition for epistemic justification. 2) On contested matters in philosophy, philosophers are not reliable. 3) At least some philosophical theses regarding contested matters in philosophy are epistemically justified. In this paper I will assess the status of the puzzle and attempt to solve it. In the first section, I'll present the puzzle with a little more detail. Secondly, I'll provide some general arguments to show that the alleged puzzle is not a legitimate one. Finally, in section 3, I will argue that even assuming that the puzzle can be coherently formulated, Goldberg's arguments in favor of premise (2) are either unsound or too limited in their scope in order to represent a significant or interesting problem for philosophers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract In this paper we present a philosophical motivation for the logics of formal inconsistency , a family of paraconsistent logics whose distinctive feature is that of having resources for expressing the notion of consistency within the object language in such a way that consistency may be logically independent of non-contradiction. We defend the view according to which logics of formal inconsistency may be interpreted as theories of logical consequence of an epistemological character. We also argue that in order to philosophically justify paraconsistency there is no need to endorse dialetheism, the thesis that there are true contradictions. Furthermore, we show that mbC , a logic of formal inconsistency based on classical logic, may be enhanced in order to express the basic ideas of an intuitive interpretation of contradictions as conflicting evidence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article critically resumes Ricardo's principle of comparative advantages pointing out internal coherence problems that have been neglected by the specialized literature. First, long-lasting disequilibria observed in the balance of trade seem incompatible with the idea that these disequilibria are caused by technical advances that change relative prices. Second, comparative advantages do not seem to work in an economy with a universally accepted commodity-money. Finally, the contradiction between the gold standard mechanisms, ruled by Smith's "Law of Reflux", and the quantitative theory of money, which is a necessary condition for the "second way" of the theory of comparative advantages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Globalization and nation-states are not in contradiction, since globalization is the present stage of capitalist development, and the nation-state is the territorial political unit that organizes the space and population in the capitalist system. Since the 1980s, Global Capitalism constitutes the economic system characterized by the opening of all national markets and a fierce competition between nation-states. Developing countries tend to catch up, while rich countries try to neutralize such competitive effort, using globalism as an ideology, and conventional orthodoxy as a strategy. Middle-income countries that are catching up in the realm of globalization are the ones that count with a national development strategy. This is broadly the case of the dynamic Asian countries. In contrast, Latin American countries have no longer their own strategy, and grow less. To add data to the argument, the author conducts an econometric test comparing these two groups of countries, and three variables: the rate of investment, the current account deficit or surplus that would indicate or not a competitive exchange rate, and public deficit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The definition of knowledge as justified true belief is the best we presently have. However, the canonical tripartite analysis of knowledge does not do justice to it due to a Platonic conception of a priori truth that puts the cart before the horse. Within a pragmatic approach, I argue that by doing away with a priori truth, namely by submitting truth to justification, and by accordingly altering the canonical analysis of knowledge, this is a fruitful definition. So fruitful indeed that it renders the Gettier counterexamples vacuous, allowing positive work in epistemology and related disciplines.