10 resultados para continuous-resource model
em Scielo Saúde Pública - SP
Resumo:
The importance of interaction between Operations Management (OM) and Human Behavior has been recently re-addressed. This paper introduced the Reasoned Action Theory suggested by Froehle and Roth (2004) to analyze Operational Capabilities exploring the suitability of this model in the context of OM. It also seeks to discuss the behavioral aspects of operational capabilities from the perspective of organizational routines. This theory was operationalized using Fishbein and Ajzen (F/A) behavioral model and a multi-case strategy was employed to analyze the Continuous Improvement (CI) capability. The results posit that the model explains partially the CI behavior in an operational context and some contingency variables might influence the general relations among the variables involved in the F/A model. Thus intention might not be the determinant variable of behavior in this context.
Resumo:
Abstract OBJECTIVE Developing continuing education guidelines for the development of nursing management competencies along with the members of the Center of Nursing Continuing Education of Parana. METHOD A qualitative research outlined by the action research method, with a sample consisting of 16 nurses. Data collection was carried out in three stages and data were analyzed according to the thematic analysis technique. RESULTS It was possible to discuss the demands and difficulties in developing nursing management competencies in hospital organizations and to collectively design a guideline. CONCLUSION The action research contributed to the production of knowledge, confirming the need and the importance of changing the educational processes and evaluations, based on methodologies and instruments for professional development in accordance with human resource policies and contemporary organizational policies.
Resumo:
Intensification of agricultural production without a sound management and regulations can lead to severe environmental problems, as in Western Santa Catarina State, Brazil, where intensive swine production has caused large accumulations of manure and consequently water pollution. Natural resource scientists are asked by decision-makers for advice on management and regulatory decisions. Distributed environmental models are useful tools, since they can be used to explore consequences of various management practices. However, in many areas of the world, quantitative data for model calibration and validation are lacking. The data-intensive distributed environmental model AgNPS was applied in a data-poor environment, the upper catchment (2,520 ha) of the Ariranhazinho River, near the city of Seara, in Santa Catarina State. Steps included data preparation, cell size selection, sensitivity analysis, model calibration and application to different management scenarios. The model was calibrated based on a best guess for model parameters and on a pragmatic sensitivity analysis. The parameters were adjusted to match model outputs (runoff volume, peak runoff rate and sediment concentration) closely with the sparse observed data. A modelling grid cell resolution of 150 m adduced appropriate and computer-fit results. The rainfall runoff response of the AgNPS model was calibrated using three separate rainfall ranges (< 25, 25-60, > 60 mm). Predicted sediment concentrations were consistently six to ten times higher than observed, probably due to sediment trapping along vegetated channel banks. Predicted N and P concentrations in stream water ranged from just below to well above regulatory norms. Expert knowledge of the area, in addition to experience reported in the literature, was able to compensate in part for limited calibration data. Several scenarios (actual, recommended and excessive manure applications, and point source pollution from swine operations) could be compared by the model, using a relative ranking rather than quantitative predictions.
Resumo:
ABSTRACT The literature on fertilization for carrot growing usually recommends nutrient application rates for yield expectations lower than the yields currently obtained. Moreover, the recommendation only considers the results of soil chemical analysis and does not include effects such as crop residues or variations in yield levels. The aim of this study was to propose a fertilizer recommendation system for carrot cultivation (FERTICALC Carrot) which includes consideration of the nutrient supply by crop residues, variation in intended yield, soil chemical properties, and the growing season (winter or summer). To obtain the data necessary for modeling nutritional requirements, 210 carrot production stands were sampled in the region of Alto Paranaíba, State of Minas Gerais, Brazil. The dry matter content of the roots, the coefficient of biological utilization of nutrients in the roots, and the nutrient harvest index for summer and winter crops were determined for these samples. To model the nutrient supply by the soil, the literature was surveyed in regard to this theme. A modeling system was developed for recommendation of macronutrients and B. For cationic micronutrients, the system only reports crop nutrient export and extraction. The FERTICALC which was developed proved to be efficient for fertilizer recommendation for carrot cultivation. Advantages in relation to official fertilizer recommendation tables are continuous variation of nutrient application rates in accordance with soil properties and in accordance with data regarding the extraction efficiency of modern, higher yielding cultivars.
Resumo:
Hydrological models are important tools that have been used in water resource planning and management. Thus, the aim of this work was to calibrate and validate in a daily time scale, the SWAT model (Soil and Water Assessment Tool) to the watershed of the Galo creek , located in Espírito Santo State. To conduct the study we used georeferenced maps of relief, soil type and use, in addition to historical daily time series of basin climate and flow. In modeling were used time series corresponding to the periods Jan 1, 1995 to Dec 31, 2000 and Jan 1, 2001 to Dec 20, 2003 for calibration and validation, respectively. Model performance evaluation was done using the Nash-Sutcliffe coefficient (E NS) and the percentage of bias (P BIAS). SWAT evaluation was also done in the simulation of the following hydrological variables: maximum and minimum annual daily flowsand minimum reference flows, Q90 and Q95, based on mean absolute error. E NS and P BIAS were, respectively, 0.65 and 7.2% and 0.70 and 14.1%, for calibration and validation, indicating a satisfactory performance for the model. SWAT adequately simulated minimum annual daily flow and the reference flows, Q90 and Q95; it was not suitable in the simulation of maximum annual daily flows.
Resumo:
A pulsatile pressure-flow model was developed for in vitro quantitative color Doppler flow mapping studies of valvular regurgitation. The flow through the system was generated by a piston which was driven by stepper motors controlled by a computer. The piston was connected to acrylic chambers designed to simulate "ventricular" and "atrial" heart chambers. Inside the "ventricular" chamber, a prosthetic heart valve was placed at the inflow connection with the "atrial" chamber while another prosthetic valve was positioned at the outflow connection with flexible tubes, elastic balloons and a reservoir arranged to mimic the peripheral circulation. The flow model was filled with a 0.25% corn starch/water suspension to improve Doppler imaging. A continuous flow pump transferred the liquid from the peripheral reservoir to another one connected to the "atrial" chamber. The dimensions of the flow model were designed to permit adequate imaging by Doppler echocardiography. Acoustic windows allowed placement of transducers distal and perpendicular to the valves, so that the ultrasound beam could be positioned parallel to the valvular flow. Strain-gauge and electromagnetic transducers were used for measurements of pressure and flow in different segments of the system. The flow model was also designed to fit different sizes and types of prosthetic valves. This pulsatile flow model was able to generate pressure and flow in the physiological human range, with independent adjustment of pulse duration and rate as well as of stroke volume. This model mimics flow profiles observed in patients with regurgitant prosthetic valves.
Resumo:
Food allergy is most frequently the result of IgE-mediated hypersensitivity reactions. Here, we describe a chronic model in which some of the intestinal and systemic consequences of continuous egg white solution ingestion by ovalbumin-sensitized eight-week-old BALB/c mice, 6 animals per group, of both sexes, were investigated. There was a 20% loss of body weight that began one week after antigen exposure and persisted throughout the experiment (3 weeks). The sensitization procedure induced the production of anti-ovalbumin IgG1 and IgE, which were enhanced by oral antigen exposure (129% for IgG1 and 164% for IgE, compared to sensitization values). Intestinal changes were determined by jejunum edema at 6 h (45% Evans blue extravasation) and by a significant eosinophil infiltration with a peak at 48 h. By day 21 of continuous antigen exposure, histological findings were mild, with mast cell hyperplasia (100%) and increased mucus production (483%). Altogether, our data clearly demonstrate that, although immune stimulation was persistently occurring in response to continuous oral antigen exposure, regulatory mechanisms were occurring in the intestinal mucosa, preventing overt pathology. The experimental model described here reproduces the clinical and pathological changes of mild chronic food allergy and may be useful for mechanistic studies of this common clinical condition.
Resumo:
Myocardial contrast echocardiography has been used for assessing myocardial perfusion. Some concerns regarding its safety still remain, mainly regarding the induction of microvascular alterations. We sought to determine the bioeffects of microbubbles and real-time myocardial contrast echocardiography (RTMCE) in a closed-chest canine model. Eighteen mongrel dogs were randomly assigned to two groups. Nine were submitted to continuous intravenous infusion of perfluorocarbon-exposed sonicated dextrose albumin (PESDA) plus continuous imaging using power pulse inversion RTMCE for 180 min, associated with manually deflagrated high-mechanical index impulses. The control group consisted of 3 dogs submitted to continuous imaging using RTMCE without PESDA, 3 dogs received PESDA alone, and 3 dogs were sham-operated. Hemodynamics and cardiac rhythm were monitored continuously. Histological analysis was performed on cardiac and pulmonary tissues. No hemodynamic changes or cardiac arrhythmias were observed in any group. Normal left ventricular ejection fraction and myocardial perfusion were maintained throughout the protocol. Frequency of mild and focal microhemorrhage areas in myocardial and pulmonary tissue was similar in PESDA plus RTMCE and control groups. The percentages of positive microscopical fields in the myocardium were 0.4 and 0.7% (P = NS) in the PESDA plus RTMCE and control groups, respectively, and in the lungs they were 2.1 and 1.1%, respectively (P = NS). In this canine model, myocardial perfusion imaging obtained with PESDA and RTMCE was safe, with no alteration in cardiac rhythm or left ventricular function. Mild and focal myocardial and pulmonary microhemorrhages were observed in both groups, and may be attributed to surgical tissue manipulation.
Resumo:
Didanosine (ddI) is a component of highly active antiretroviral therapy drug combinations, used especially in resource-limited settings and in zidovudine-resistant patients. The population pharmacokinetics of ddI was evaluated in 48 healthy volunteers enrolled in two bioequivalence studies. These data, along with a set of co-variates, were the subject of a nonlinear mixed-effect modeling analysis using the NONMEM program. A two-compartment model with first order absorption (ADVAN3 TRANS3) was fitted to the serum ddI concentration data. Final pharmacokinetic parameters, expressed as functions of the co-variates gender and creatinine clearance (CL CR), were: oral clearance (CL = 55.1 + 240 x CL CR + 16.6 L/h for males and CL = 55.1 + 240 x CL CR for females), central volume (V2 = 9.8 L), intercompartmental clearance (Q = 40.9 L/h), peripheral volume (V3 = 62.7 + 22.9 L for males and V3 = 62.7 L for females), absorption rate constant (Ka = 1.51/h), and dissolution time of the tablet (D = 0.43 h). The intraindividual (residual) variability expressed as coefficient of variation was 13.0%, whereas the interindividual variability of CL, Q, V3, Ka, and D was 20.1, 75.8, 20.6, 18.9, and 38.2%, respectively. The relatively high (>30%) interindividual variability for some of these parameters, observed under the controlled experimental settings of bioequivalence trials in healthy volunteers, may result from genetic variability of the processes involved in ddI absorption and disposition.
Resumo:
The physical and chemical alterations in palm oil during continuous industrial par frying of breaded chicken snacks were evaluated using a pseudo first-order kinetic model. The acidity index, refractive index, concentration of polar compounds, viscosity, color, and absorbance (232 and 268 nm) of 238 samples of the frying oil collected during 26 days of production were analyzed. For all of the analyses, the results of the oil were below the limits recommended for oil disposal, indicating that the processing conditions were safe and that under these experimental conditions the oil remained suitable for frying. The linear regressions were significant for refractive index, content of polar compounds, and lightness (L*). The content of polar compounds was determined using a cooking oil tester, and it had the best fit to the proposed model and can be used as an effective index for monitoring palm oil during the continuous par frying of breaded chicken snacks. The high turnover rate of the oil was important for maintaining the oil in good running conditions.