16 resultados para continuous inverse systems
em Scielo Saúde Pública - SP
Resumo:
A simple low-cost flow cell was developed, built and optimized in order to observe dynamic interfacial tension of continuous flow systems. Distinct materials can be used in one of the cell walls in order to observe the intermolecular forces between the flowing liquid and the chemical constitution of the walls. The fluorescence depolarization was evaluated using Rhodamine B as fluorescent probe seeded in ethylene glycol. The effects of the positioning angles on the data acquired across the cell are reported. The reproducibility of the data was evaluated with a spectrometer assembled in-house and the relative standard deviation was below 3%.
Resumo:
OBJECTIVE: To compare the effects of 3 types of noninvasive respiratory support systems in the treatment of acute pulmonary edema: oxygen therapy (O2), continuous positive airway pressure, and bilevel positive pressure ventilation. METHODS: We studied prospectively 26 patients with acute pulmonary edema, who were randomized into 1 of 3 types of respiratory support groups. Age was 69±7 years. Ten patients were treated with oxygen, 9 with continuous positive airway pressure, and 7 with noninvasive bilevel positive pressure ventilation. All patients received medicamentous therapy according to the Advanced Cardiac Life Support protocol. Our primary aim was to assess the need for orotracheal intubation. We also assessed the following: heart and respiration rates, blood pressure, PaO2, PaCO2, and pH at begining, and at 10 and 60 minutes after starting the protocol. RESULTS: At 10 minutes, the patients in the bilevel positive pressure ventilation group had the highest PaO2 and the lowest respiration rates; the patients in the O2 group had the highest PaCO2 and the lowest pH (p<0.05). Four patients in the O2 group, 3 patients in the continuous positive pressure group, and none in the bilevel positive pressure ventilation group were intubated (p<0.05). CONCLUSION: Noninvasive bilevel positive pressure ventilation was effective in the treatment of acute cardiogenic pulmonary edema, accelerated the recovery of vital signs and blood gas data, and avoided intubation.
Resumo:
Embryonic tissue explants of the sand fly Lutzomyia longipalpis (Lutz & Neiva 1912) the main vector of Leishmania chagasi (Cunha and Chagas), were used to obtain a continuous cell line (Lulo). The tissues were seeded in MM/VP12 medium and these were incubated at 28ºC. The first subculture was obtained 45 days after explanting and 96 passages have been made to date. Lulo is composed of epithelioid cells, showed a 0.04 generations/hour exponential growth rate and population doubling time at 24.7 h. The cell line isoenzymatic profiles were determined by using PGI, PGM, MPI and 6-PGDH systems, coinciding with patterns obtained from the same species and colony's pupae and adults. The species karyotype characteristics were recognized (2n = 8), in which pair 1 is subtelocentric and pairs 2, 3 and 4 are metacentric. Lulo was free from bacterial, fungal, mycoplasmic and viral infection. Susceptibility to five arbovirus was determined, the same as Lulo interaction with Leishmania promastigotes.
Resumo:
A hybrid study combining technological production and methodological research aiming to establish associations between the data and information that are part of a Computerized Nursing Process according to the ICNP® Version 1.0, indicators of patient safety and quality of care. Based on the guidelines of the Agency for Healthcare Research and Quality and the American Association of Critical Care Nurses for the expansion of warning systems, five warning systems were developed: potential for iatrogenic pneumothorax, potential for care-related infections, potential for suture dehiscence in patients after abdominal or pelvic surgery, potential for loss of vascular access, and potential for endotracheal extubation. The warning systems are a continuous computerized resource of essential situations that promote patient safety and enable the construction of a way to stimulate clinical reasoning and support clinical decision making of nurses in intensive care.
Resumo:
Soils play a fundamental role in the production of human foods. The Oxisols in the state of Paraná are among the richest and most productive soils in Brazil, but degradation and low porosity are frequently documented, due to intensive farming involving various management strategies and the application of high-tech solutions. This study aims to investigate changes in the porosity of two Red Oxisols (Latossolos Vermelhos), denoted LVef (eutroferric) and LVdf (dystroferric) under conventional and no-tillage soil management, with a succession of annual crops of soybean, maize and wheat over a continuous period of more than 20 years. After describing the soil profiles under native forest, no-tillage management and conventional tillage using the crop profile method, deformed and non-deformed soil samples were collected from the volumes most compacted by human intervention and the physical, chemical and mineralogical properties analyzed. The various porosity classes (total pore volume, inter-aggregate porosity between channels and biological cavities) and intra-aggregate porosity (determined in 10 cm³ saturated clods subjected to a pressure of -10 kPa to obtain a pore volume with a radius (r eq), > 15 μm and < 15 μm). The results showed that the effects of no-tillage farming on porosity are more pronounced in both soil types. Porosity of the LVdf was higher than pf the LVef soil, whatever the management type. In the LVdf soil, only pores with a radius of > 15 μm were affected by farming whereas in the LVef soil, pores with a radius of < 15 μm were affected as well.
Resumo:
In agricultural systems the N-NH4+ and N-NO3- contents is significantly affected by soil management. This study investigated the dynamics of inorganic nitrogen (N; NH4+ and NO3-) in an experimental evaluation of soil management systems (SMSs) adopted in 1988 at the experimental station of the ABC Foundation in Ponta Grossa, in the Central South region of the State of Paraná. The objective of this study was to evaluate the changes in N-NH4+ and N-NO3- flux in the surface layer of a Red Latosol arising from SMSs over a 12-month period. The experiment was arranged in a completely randomized block design in split plots, in three replications. The plots consisted of the following SMSs: 1) conventional tillage (CT); 2) minimum tillage (MT); 3) no-tillage with chisel plow every three years (NT CH); and 4) continuous no-tillage (CNT). To evaluate the dynamics of inorganic N, the subplots represented samplings (11 sampling times, T1 - T11). The ammonium N (N-NH4+) and nitric N (N-NO3-) contents were higher in systems with reduced tillage (MT and NT CH) and without tillage (CNT) than in the CT system. In the period from October 2003 to February 2004, the N-NH4+ was higher than the N-NO3- soil content. Conversely, in the period from May 2004 to July 2004, the N-NO3- was higher than the N-NH4+ content. The greatest fluctuation in the N-NH4+ and N-NO3- contents occurred in the 0-2.5 cm layer, and the highest peak in the N-NH4+ and N-NO3- concentrations occurred after the surface application of N. Both N-NH4+ and N-NO3- were strongly correlated with the soil organic C content, which indicated that these properties vary together in the system.
Resumo:
Nitrogen is the main limiting factor in crop productivity and thereby soil management systems may change the mineralization and nitrification rates. In an experiment on soil management systems implemented in 1988 at the experimental station Fundação ABC, Ponta Grossa, in the central South region of the State of Paraná, inorganic N dynamics were examined to find a soil management strategy with a view to a sustainable environment. The objective of this study was to calculate the net mineralization and nitrification rates of soil N and the correlation with soil pH under management systems. Randomized complete block design was used, in split plots, in three replications. The following soil management systems (SMSs) were adopted in the plots: 1) conventional tillage (CT); 2) minimum tillage (MT); 3) no-tillage with chisel plow every three years (NT CH); and 4) continuous no-tillage (CNT). To evaluate the dynamics of inorganic N, samples were collected from sub-plots at different times (11 sampling times - T1 to T11). In the CNT and NT CH, the net mineralization rates were higher in the MT and CT systems in the 0-2.5 cm soil layer, while the nitrification rate was higher in the 2.5-5 cm layer. Soon after implementing the white oat management, the mineralization and nitrification rates in all soil layers were higher in the MT and CT systems. In the period of soybean development, in the 0-2.5 and 2.5-5 cm soil layers, the mineralization and nitrification rates were higher in the CNT and NT CH than in the MT and CT systems.
Resumo:
The objective of this experiment was to study the effects of soil management systems on the bulk density, chemical soil properties, and on the soil microbial activity on a Latossolo Vermelho distrófico (Oxisol). Soil samples were collected from plots under the following management conditions: a) natural dense "cerrado" vegetation (savanna); b) degraded Brachiaria decumbens pasture, 20 years old; c) no-tillage treatment with annual crop sequence (bean, corn, soybean and dark-oat in continuous rotation), 8 years old; d) conventional tillage treatment with crop residues added to the soil, and annual crop sequence, 10 years old. The continuous use of no-tillage system resulted in an increase in microbial biomass and decrease in soil basal respiration, therefore displaying evident long-term effects on the increase of soil C content. The no-tillage system also provided an improvement in bulk density and chemical properties of the soil. Hence, the no-tillage management system could be an alternative for the conservation and maintenance of physical and chemical conditions and the productive potential of "cerrado" soils.
Resumo:
The objective of this work was to assess the effects of integrated crop-livestock systems, associated with two tillage and two fertilization regimes, on the abundance and diversity of the soil macrofauna. Four different management systems were studied: continuous pasture (mixed grass); continuous crop; two crop-livestock rotations (crop/pasture and pasture/crop); and native Cerrado as a control. Macrofauna was sampled using a modified Tropical Soil Biology and Fertility method, and all individuals were counted and identified at the morphospecies level for each plot. A total of 194 morphospecies were found, distributed among 30 groups, and the most representative in decreasing order of density were: Isoptera, Coleoptera larvae, Formicidae, Oligochaeta, Coleoptera adult, Diplopoda, Hemiptera, Diptera larvae, Arachnida, Chilopoda, Lepidoptera, Gasteropoda, Blattodea and Orthoptera. Soil management systems and tillage regimes affected the structure of soil macrofauna, and integrated crop-livestock systems, associated with no-tillage, especially with grass/legume species associations, had more favorable conditions for the development of "soil engineers" compared with continuous pasture or arable crops. Soil macrofauna density and diversity, assessed at morphospecies level, are effective data to measure the impact of land use in Cerrado soils.
Resumo:
The objective of this work was to evaluate changes in the photosynthetic photon flux density (PPFD) interception efficiency and PPFD extinction coefficient for maize crop subjected to different soil tillage systems and water availability levels. Crops were subjected to no-tillage and conventional tillage systems combined with full irrigation and non-irrigation treatments. Continuous measurements of transmitted PPFD on the soil surface and incoming PPFD over the canopy were taken throughout the crop cycle. Leaf area index and soil water potential were also measured during the whole period. Considering a mean value over the maize cycle, intercepted PPFD was higher in the conventional tillage than in the no-tillage system. During the initial stages of plants, intercepted PPFD in the conventional tillage was double the PPFD interception in the no-tillage treatment. However, those differences were reduced up to the maximum leaf area index, close to tasseling stage. The lowest interception of PPFD occurred in the conventional tillage during the reproductive period, as leaf senescence progressed. Over the entire crop cycle, the interception of PPFD by the non-irrigated plants was about 20% lower than by the irrigated plants. The no-tillage system reduced the extinction coefficient for PPFD, which may have allowed a higher penetration of solar radiation into the canopy
Resumo:
The phyllochron is defined as the time required for the appearance of successive leaves on a plant; this characterises plant growth, development and adaptation to the environment. To check the growth and adaptation in cultivars of strawberry grown intercropped with fig trees, it was estimated the phyllochron in these production systems and in the monocrop. The experiment was conducted in greenhouses at the University of Passo Fundo (28º15'41'' S, 52º24'45'' W and 709 m) from June 8th to September 4th, 2009; this comprised the period of transplant until the 2nd flowering. The cultivars Aromas, Camino Real, Albion, Camarosa and Ventana, which seedlings were originated from the Agrícola LLahuen Nursery in Chile, as well as Festival, Camino Real and Earlibrite, originated from the Viansa S.A. Nursery in Argentina, were grown in white polyethylene bags filled with commercial substrate (Tecnomax®) and evaluated. The treatments were arranged in a randomised block design and four replicates were performed. A linear regression was realized between the leaf number (LN) in the main crown and the accumulated thermal time (ATT). The phyllochron (degree-day leaf-1) was estimated as the inverse of the angular coefficient of the linear regression. The data were submitted to ANOVA, and when significance was observed, the means were compared using the Tukey test (p < 0.05). The mean and standard deviation of phyllochrons of strawberry cultivars intercropped with fig trees varied from 149.35ºC day leaf-1 ± 31.29 in the Albion cultivar to 86.34ºC day leaf-1 ± 34.74 in the Ventana cultivar. Significant differences were observed among cultivars produced in a soilless environment with higher values recorded for Albion (199.96ºC day leaf-1 ± 29.7), which required more degree-days to produce a leaf, while cv. Ventana (85.76ºC day leaf-1 ± 11.51) exhibited a lower phyllochron mean value. Based on these results, Albion requires more degree-days to issue a leaf as compared to cv. Ventana. It was conclude that strawberry cultivars can be grown intercropped with fig trees (cv. Roxo de Valinhos).
Resumo:
Data available in the literature were used to develop a warning system for bean angular leaf spot and anthracnose, caused by Phaeoisariopsis griseola and Colletotrichum lindemuthianum, respectively. The model is based on favorable environmental conditions for the infectious process such as continuous leaf wetness duration and mean air temperature during this subphase of the pathogen-host relationship cycle. Equations published by DALLA PRIA (1977) showing the interactions of those two factors on the disease severity were used. Excell spreadsheet was used to calculate the leaf wetness period needed to cause different infection probabilities at different temperature ranges. These data were employed to elaborate critical period tables used to program a computerized electronic device that records leaf wetness duration and mean temperature and automatically shows the daily disease severity value (DDSV) for each disease. The model should be validated in field experiments under natural infection for which the daily disease severity sum (DDSS) should be identified as a criterion to indicate the beginning and the interval of fungicide applications to control both diseases.
Resumo:
This study aims to assess the composition of weed communities as a function of distinct selection factors, at neighboring areas submitted to distinct soil management and diverse use for sixteen years. Four areas submitted to distinct managements (conventional tillage system; no-till system; integration crop/livestock and continuous livestock) were sampled in relation to the occurrence and severity of weed species by the beginning of the planting season, being estimated the relative abundance, relative frequency and relative dominance of each weed species under each area, as well as the Importance Value Index for each species. Areas were also compared by the Sørensen's similarity coefficient. Areas where pasture and grazing were never present, exhibited a number of seedlings of weed species 250% higher than areas periodically or continuously under grazing, while the area of soil covered by weeds was 87% superior at the conventional tillage system in relation to the average of the other treatments. Grass weeds were the most important at the conventional tillage area while broadleaved weeds where more important at the no-till area, probably due also to herbicide selection factors. Under crop/livestock integration there may be the need to care about controlling seedlings of the forage species inside grain crops in succession.
Resumo:
The Cactaceae have morphological and physiological adaptations associated with their life histories that are reflected in different modes of reproduction and multiplication. The reproductive phenology, preferential reproductive mode, and the sexual and asexual multiplication of Opuntia monacantha were investigated between 2003 and 2006 in two restinga (sandy coastal) environment in Southern Brazil to determine the adaptive values of its reproduction modes. Flowering was annual and occurred continuous for approximately 100 days between the months of September and January, with a few flowers opening per day per individual (but many in the whole population). Facultative xenogamy was identified as the preferential sexual system, with the highest levels of fruit and seed formation following natural pollination. The seeds are recalcitrant and have high germinative capacities under laboratory conditions. Seedling recruitment and establishment in the field was extremely reduced. The skins of the fruits and the cladodes have high capacities for regeneration and clonal multiplication because of their areolas.
Resumo:
A system is said to be "instantaneous" when for a given constant input an equilibrium output is obtained after a while. In the meantime, the output is changing from its initial value towards the equilibrium one. This is the transient period of the system and transients are important features of open-respirometry systems. During transients, one cannot compute the input amplitude directly from the output. The existing models (e.g., first or second order dynamics) cannot account for many of the features observed in real open-respirometry systems, such as time lag. Also, these models do not explain what should be expected when a system is speeded up or slowed down. The purpose of the present study was to develop a mechanistic approach to the dynamics of open-respirometry systems, employing basic thermodynamic concepts. It is demonstrated that all the main relevant features of the output dynamics are due to and can be adequately explained by a distribution of apparent velocities within the set of molecules travelling along the system. The importance of the rate at which the molecules leave the sensor is explored for the first time. The study approaches the difference in calibrating a system with a continuous input and with a "unit impulse": the former truly reveals the dynamics of the system while the latter represents the first derivative (in time) of the former and, thus, cannot adequately be employed in the apparent time-constant determination. Also, we demonstrate why the apparent order of the output changes with volume or flow.