82 resultados para content-classification scheme
em Scielo Saúde Pública - SP
Resumo:
This experiment was carried out in order to evaluate the effect of Sitophilus zeamais on physical, physiological and sanitary quality of stored corn. Samples of 500 g of the hybrid OC-705, in three replicates, were conditioned in glasses covered with a screened lid, and kept in chamber at 25±2ºC, 70±5% RH and 12 h of photophase, for 150 days. The infestation levels were 0, 5, 15 and 50 adults/replicate, for the storage periods of 30, 60, 90, 120 and 150 days. The moisture content, classification, weight loss, germination and internal infestation were evaluated monthly. Significant inverse correlations were verified between the number of insects and both the germination and the weight loss; also between the internal infestation and the germination and the standard type. The presence of S. zeamais showed a positive correlation with the weight loss, what means that the internal and external infestations contribute to the reduction of physiological and physical quality of corn seeds. The mean dry matter loss was 0,36%/day, corresponding to a consumption of 0,0001%/insect/month. As the result of those damages, the product suffered reduction of the commercial grade in 30 days, with significant loss in all quality factors.
Resumo:
This paper aims to assess the effectiveness of ASTER imagery to support the mapping of Pittosporum undulatum, an invasive woody species, in Pico da Vara Natural Reserve (S. Miguel Island, Archipelago of the Azores, Portugal). This assessment was done by applying K-Nearest Neighbor (KNN), Support Vector Machine (SVM) and Maximum Likelihood (MLC) pixel-based supervised classifications to 4 different geographic and remote sensing datasets constituted by the Visible, Near-Infrared (VNIR) and Short Wave Infrared (SWIR) of the ASTER sensor and by digital cartography associated to orography (altitude and "distance to water streams") of which the spatial distribution of Pittosporum undulatum directly depends. Overall, most performed classifications showed a strong agreement and high accuracy. At targeted species level, the two higher classification accuracies were obtained when applying MLC and KNN to the VNIR bands coupled with auxiliary geographic information use. Results improved significantly by including ecology and occurrence information of species (altitude and distance to water streams) in the classification scheme. These results show that the use of ASTER sensor VNIR spectral bands, when coupled to relevant ancillary GIS data, can constitute an effective and low cost approach for the evaluation and continuous assessment of Pittosporum undulatum woodland propagation and distribution within Protected Areas of the Azores Islands.
Resumo:
Objective Improve the content validity of the instrument for classification of pediatric patients and evaluate its construct validity. Method A descriptive exploratory study in the measurement of the content validity index, and correlational design for construct validation through exploratory factor analysis. Results The content validity index for indicators was 0.99 and it was 0.97 for graded situations. Three domains were extracted in the construct validation, namely: patient, family and therapeutic procedures, with 74.97% of explained variance. The instrument showed evidences of content and construct validity. Conclusion The validation of the instrument occurred under the approach of family-centered care, and allowed incorporating some essential needs of childhood such as playing, interaction and affection in the content of the instrument.
Resumo:
The Brazilian System of Soil Classification (SiBCS) is a taxonomic system, open and in permanent construction, as new knowledge on Brazilian soils is obtained. The objective of this study was to characterize the chemical, physical, morphological, micro-morphological and mineralogical properties of four pedons of Oxisols in a highland toposequence in the upper Jequitinhonha Valley, emphasizing aspects of their genesis, classification and landscape development. The pedons occupy the following slope positions: summit - Red Oxisol (LV), mid slope (upper third) - Yellow-Red Oxisol (LVA), lower slope (middle third)- Yellow Oxisol (LA) and bottom of the valley (lowest third) - "Gray Oxisol" ("LAC"). These pedons were described and sampled for characterization in chemical and physical routine analyses. The total Fe, Al and Mn contents were determined by sulfuric attack and the Fe, Al and Mn oxides in dithionite-citrate-bicarbonate and oxalate extraction. The mineralogy of silicate clays was identified by X ray diffraction and the Fe oxides were detected by differential X ray diffraction. Total Ti, Ga and Zr contents were determined by X ray fluorescence spectrometry. The "LAC" is gray-colored and contains significant fragments of structure units in the form of a dense paste, characteristic of a gleysoil, in the horizons A and BA. All pedons are very clayey, dystrophic and have low contents of available P and a pH of around 5. The soil color was related to the Fe oxide content, which decreased along the slope. The decrease of crystalline and low- crystalline Fe along the slope confirmed the loss of Fe from the "LAC". Total Si increased along the slope and total Al remained constant. The clay fraction in all pedons was dominated by kaolinite and gibbsite. Hematite and goethite were identified in LV, low-intensity hematite and goethite in LVA, goethite in LA. In the "LAC", no hematite peaks and goethite were detected by differential X ray diffraction. The micro-morphology indicated prevalence of granular microstructure and porosity with complex stacking patterns.. The soil properties in the toposequence converged to a single soil class, the Oxisols, derived from the same source material. The landscape evolution and genesis of Oxisols of the highlands in the upper Jequitinhonha Valley are related to the evolution of the drainage system and the activity of excavating fauna.
Resumo:
Considering that information from soil reflectance spectra is underutilized in soil classification, this paper aimed to evaluate the relationship of soil physical, chemical properties and their spectra, to identify spectral patterns for soil classes, evaluate the use of numerical classification of profiles combined with spectral data for soil classification. We studied 20 soil profiles from the municipality of Piracicaba, State of São Paulo, Brazil, which were morphologically described and classified up to the 3rd category level of the Brazilian Soil Classification System (SiBCS). Subsequently, soil samples were collected from pedogenetic horizons and subjected to soil particle size and chemical analyses. Their Vis-NIR spectra were measured, followed by principal component analysis. Pearson's linear correlation coefficients were determined among the four principal components and the following soil properties: pH, organic matter, P, K, Ca, Mg, Al, CEC, base saturation, and Al saturation. We also carried out interpretation of the first three principal components and their relationships with soil classes defined by SiBCS. In addition, numerical classification of the profiles based on the OSACA algorithm was performed using spectral data as a basis. We determined the Normalized Mutual Information (NMI) and Uncertainty Coefficient (U). These coefficients represent the similarity between the numerical classification and the soil classes from SiBCS. Pearson's correlation coefficients were significant for the principal components when compared to sand, clay, Al content and soil color. Visual analysis of the principal component scores showed differences in the spectral behavior of the soil classes, mainly among Argissolos and the others soils. The NMI and U similarity coefficients showed values of 0.74 and 0.64, respectively, suggesting good similarity between the numerical and SiBCS classes. For example, numerical classification correctly distinguished Argissolos from Latossolos and Nitossolos. However, this mathematical technique was not able to distinguish Latossolos from Nitossolos Vermelho férricos, but the Cambissolos were well differentiated from other soil classes. The numerical technique proved to be effective and applicable to the soil classification process.
Resumo:
ABSTRACT Diffuse reflectance spectroscopy (DRS) is a fast and cheap alternative for soil clay, but needs further investigation to assess the scope of application. The purpose of the study was to develop a linear regression model to predict clay content from DRS data, to classify the soils into three textural classes, similar to those defined by a regulation of the Brazilian Ministry of Agriculture, Livestock and Food Supply. The DRS data of 412 soil samples, from the 0.0-0.5 m layer, from different locations in the state of Rio Grande do Sul, Brazil, were measured at wavelengths of 350 to 2,500 nm in the laboratory. The fitting of the linear regression model developed to predict soil clay content from the DRS data was based on a R2 value of 0.74 and 0.75, with a RMSE of 7.82 and 8.51 % for the calibration and validation sets, respectively. Soil texture classification had an overall accuracy of 79.0 % (calibration) and 80.9 % (validation). The heterogeneity of soil samples affected the performance of the prediction models. Future studies should consider a previous classification of soil samples in different groups by soil type, parent material and/or sampling region.
Resumo:
The objective of this work was to assess and characterize two clones, 169 and 685, of Cabernet Sauvignon grapes and to evaluate the wine produced from these grapes. The experiment was carried out in São Joaquim, SC, Brazil, during the 2009 harvest season. During grape ripening, the evolution of physical-chemical properties, phenolic compounds, organic acids, and anthocyanins was evaluated. During grape harvest, yield components were determined for each clone. Individual and total phenolics, individual and total anthocyanins, and antioxidant activity were evaluated for wine. The clones were also assessed regarding the duration of their phenological cycle. During ripening, the evolution of phenolic compounds and of physical-chemical parameters was similar for both clones; however, during harvest, significant differences were observed regarding yield, number of bunches per plant and berries per bunch, leaf area, and organic acid, polyphenol, and anthocyanin content. The wines produced from these clones showed significant differences regarding chemical composition. The clones showed similar phenological cycle and responses to bioclimatic parameters. Principal component analysis shows that clone 685 is strongly correlated with color characteristics, mainly monomeric anthocyanins, while clone 169 is correlated with individual phenolic compounds.
Resumo:
The objective of this work was to evaluate the biochemical composition of six berry types belonging to Fragaria, Rubus, Vaccinium and Ribes genus. Fruit samples were collected in triplicate (50 fruit each) from 18 different species or cultivars of the mentioned genera, during three years (2008 to 2010). Content of individual sugars, organic acids, flavonols, and phenolic acids were determined by high performance liquid chromatography (HPLC) analysis, while total phenolics (TPC) and total antioxidant capacity (TAC), by using spectrophotometry. Principal component analysis (PCA) and hierarchical cluster analysis (CA) were performed to evaluate the differences in fruit biochemical profile. The highest contents of bioactive components were found in Ribes nigrum and in Fragaria vesca, Rubus plicatus, and Vaccinium myrtillus. PCA and CA were able to partially discriminate between berries on the basis of their biochemical composition. Individual and total sugars, myricetin, ellagic acid, TPC and TAC showed the highest impact on biochemical composition of the berry fruits. CA separated blackberry, raspberry, and blueberry as isolate groups, while classification of strawberry, black and red currant in a specific group has not occurred. There is a large variability both between and within the different types of berries. Metabolite fingerprinting of the evaluated berries showed unique biochemical profiles and specific combination of bioactive compound contents.
Resumo:
Soil compaction caused by machinery traffic reduces crop yields. This study aimed to evaluate the effects of intensive traffic, and the soil water content, on the soil penetration resistance (PR) of a Rhodic Eutrudox (Distroferric Red Latosol, Brazilian Classification), managed under no-tillage (NT). The experiment consisted of six treatments: NT with recent chiseling, NT without additional compaction, and NT with additional compaction by 4, 8, 10 and 20 passes of a harvester with a weight of 100 kN (70 kN on the front axle). Undisturbed soil samples were collected at 5.5-10.5 cm and 13.5-18.5 cm depth to quantify the soil bulk density (BD). The PR was assessed in four periods, using an impact penetrometer, inserted in the soil to a depth of 46 cm. The effect of traffic intensities on the PR was small when this variable was assessed with the soil in the plastic consistency. Differences in PR among treatments increased as the soil water content decreased. The increase in the values of PR and BD was higher in the first passes, but the increase in the number of traffics resulted in deeper soil compaction. The machinery traffic effects on PR are better characterized in the friable soil consistency.
Resumo:
In vivo proton magnetic resonance spectroscopy (¹H-MRS) is a technique capable of assessing biochemical content and pathways in normal and pathological tissue. In the brain, ¹H-MRS complements the information given by magnetic resonance images. The main goal of the present study was to assess the accuracy of ¹H-MRS for the classification of brain tumors in a pilot study comparing results obtained by manual and semi-automatic quantification of metabolites. In vivo single-voxel ¹H-MRS was performed in 24 control subjects and 26 patients with brain neoplasms that included meningiomas, high-grade neuroglial tumors and pilocytic astrocytomas. Seven metabolite groups (lactate, lipids, N-acetyl-aspartate, glutamate and glutamine group, total creatine, total choline, myo-inositol) were evaluated in all spectra by two methods: a manual one consisting of integration of manually defined peak areas, and the advanced method for accurate, robust and efficient spectral fitting (AMARES), a semi-automatic quantification method implemented in the jMRUI software. Statistical methods included discriminant analysis and the leave-one-out cross-validation method. Both manual and semi-automatic analyses detected differences in metabolite content between tumor groups and controls (P < 0.005). The classification accuracy obtained with the manual method was 75% for high-grade neuroglial tumors, 55% for meningiomas and 56% for pilocytic astrocytomas, while for the semi-automatic method it was 78, 70, and 98%, respectively. Both methods classified all control subjects correctly. The study demonstrated that ¹H-MRS accurately differentiated normal from tumoral brain tissue and confirmed the superiority of the semi-automatic quantification method.
Resumo:
Breeding soybean for high seed quality is an important approach for developing cultivars for tropical regions, and the lignin content in the seed coat is one of the screening parameters for this trait. Considering that many breeding lines are evaluated in each growing season using the presently recommended method for lignin determination, a long period is required for the evaluation of the whole breeding program. This time limitation may influence lignin content assessment, if lignin is degraded during storage. This research reported was designed to determine whether lignin was degraded in the seed coat of soybean seed cultivars stored for one year in a controlled environment (10°C temperature and 50% air relative humidity). Seeds of 12 selected soybean cultivars that had a range in seed coat lignin content were evaluated. Seeds were hand harvested just after physiological maturity and evaluated for seed coat lignin content at harvest and after one year of storage in a cold room (10°C and 50% RH). The lignin content in seed coats differed significantly among cultivars in both analyses, but for both results the sequence of cultivar classification and the lignin content values of each cultivar did not change. A regression analysis of lignin content at harvest and after one year of storage indicated a direct relationship between both lignin determinations suggesting no differences between the lignin content of each cultivar due to prolonged storage (r² = 0.98***). This indicates that the lignin determination in the soybean seed coat can be performed over a long time period without any bias due to change in its content.
Resumo:
The objective in this research was to evaluate the isoflavone content and the physiological quality of seed from conventional and transgenic soybean cultivars before and after 180 days of storage. Twenty one soybean cultivars: CD 202, CD 206, CD 208, CD 213RR, CD 214RR, CD 215, CD 216, CD 217, CD 218, CD 221, BRS 184, BRS 185, BRS 214, BRS 244RR, BRS 245RR, BRS 246RR, BRS 255, BRS 257, BRS 258, BRS 261 and BRS 262, grown in the 2005/2006 crop season, were assayed. The seeds were packed in Kraft paper bags and stored at room temperature under laboratory conditions. Seeds were evaluated with respect to their germination and vigor (first germination count, accelerated aging and tetrazolium test) and their total isoflavone contents and respective aglycon forms (daidzein, genistein and glycitein),glycosides (daidzine, genistine and glycitine) and malonyl conjugates. A completely randomized block design with six replications with the treatments set out within a subplot scheme (21 cultivars x 2 storage periods) was used. The F-test was used to compare means between storage periods and the Scott-Knott test to compare cultivars for each storage period, both with a 95% probability. It was concluded that isoflavone contents differ between cultivars and show a distinct behavior throughout storage.
Resumo:
The chlorophyll meter (SPAD-502) is widely used to estimate chlorophyll content, but non-uniform chloroplast distribution can affect its accuracy. This study aimed to assess the effect of photon fluence (F, irradiance x time of illumination) in leaves with different chlorophyll content and determine the effect of chlorophyll a/b on SPAD values of four tropical tree species (Croton draconoides Müll. Arg., Hevea guianensis Aubl., Hymenaea courbaril L. and Matisia cordata H.B.K.). There were also determined calibration equations for the chlorophyll meter and assessed the effect of F on SPAD values between 07:00 h and 17:00 h. Calibration equations were obtained after determining leaf chlorophyll content in the laboratory. Increases in F with time caused a reduction in SPAD values in species with a high chlorophyll content, with reductions of 20% in M. cordata and 10% in H. guianensis. Leaves of C. draconoides and H. courbaril had lower chlorophyll content and showed no changes in SPAD values with increase in F. The chlorophyll a/b ratio increased with SPAD values and the SPAD/chlorophyll relationship was best described by an exponential equation. It seems that F may affect SPAD values in leaves with high chlorophyll content, probably due to non-uniform chloroplast distribution at high irradiance. This indicates that SPAD values tend to be more accurate if recorded early in morning when irradiance is low.
Resumo:
As with any variety of rice, red rice characteristics are subject to varietal differences, growing conditions, types of processing, and nutritional and rheological properties. This study determined the nutritional characteristics (centesimal composition and minerals) and paste viscosity properties of raw grains of four red rice genotypes (Tradicional MNAPB0405, MNACE0501 and MNACH0501) and the paste viscosity properties of pre-gelatinized flours obtained at different cooking times (20, 30 and 40 min). The main nutritional properties were correlated with the pasting properties of the pre-gelatinized flours. The samples showed differences in nutritional properties and paste viscosity. MNAPB0405 and MNACE0501 showed higher levels of fiber and fat and provided higher caloric energy than Tradicional and MNACH0501, which, in turn, showed higher levels of amylose. MNACH0501 showed higher peak viscosity (2402 cP), higher breakdown viscosity (696 cP) and a greater tendency to retrogradation (1510 cP), while Tradicional, MNAPB0405 and MNACE0501 had pasting profiles with peak viscosities varying between 855 and 1093 cP, breaking viscosity below 85 cP and retrogradation tendency between 376 and 1206 cP. The factors genotype and cooking time influenced the rheological behavior of pre-gelatinized flours, decreasing their pasting properties. The protein and amylose levels are correlated with the pasting properties and can be used as indicators of these properties in different genotypes of red rice, whether raw or processed into pre-gelatinized flours.
Resumo:
Studies on nutritional efficiency of phosphorus in conilon coffee plants are important tools to unravel the high limitation that natural low levels of this nutrient in soil impose to these species cultivars. Therefore, this study aimed at evaluating the nutritional efficiency and the response to phosphorus of conilon coffee clones. Plants were managed during 150 days in pots containing 10 dm³ of soil, in greenhouse. A factorial scheme 13 x 2 was used, with three replications, being the factors: 13 clones constituting the clonal cultivar "Vitória Incaper 8142" and two levels of phosphate fertilization (0% and 150% of the P2O5 usualy recommended), in a completely randomized design (CRD). The results indicate a differentiated response of dry matter production and of phosphorus content on each level of phosphate fertilization for the conilon coffee clones and that CV-04, CV-05 and CV-08 clones are nutritionally efficient and responsive to the phosphate fertilization.