62 resultados para chemical properties of the elements
em Scielo Saúde Pública - SP
Resumo:
Brazilian soils have natural high chemical variability; thus, apparent electrical conductivity (ECa) can assist interpretation of crop yield variations. We aimed to select soil chemical properties with the best linear and spatial correlations to explain ECa variation in the soil using a Profiler sensor (EMP-400). The study was carried out in Sidrolândia, MS, Brazil. We analyzed the following variables: electrical conductivity - EC (2, 7, and 15 kHz), organic matter, available K, base saturation, and cation exchange capacity (CEC). Soil ECa was measured with the aid of an all-terrain vehicle, which crossed the entire area in strips spaced at 0.45 m. Soil samples were collected at the 0-20 cm depth with a total of 36 samples within about 70 ha. Classical descriptive analysis was applied to each property via SAS software, and GS+ for spatial dependence analysis. The equipment was able to simultaneously detect ECa at the different frequencies. It was also possible to establish site-specific management zones through analysis of correlation with chemical properties. We observed that CEC was the property that had the best correlation with ECa at 15 kHz.
Resumo:
The leaf essential oils of Eugenia lutescens Cambess andEugenia langsdorffii O. Berg, collected in the rainy (RS) and dry seasons (DS), were extracted by hydrodistillation and then characterized by a gas chromatography-flame ionization detector and a gas chromatography-mass spectrometer. The potential acaricidal activity and oviposition deterrence of these oils were evaluated against Tetranychus urticae . The oil yields were higher in the RS for E. lutescens, while those forE. langsdorffii were higher in the DS. α-Pinene and β-pinene were determined to be the major constituents of the oils fromE. lutescens, while bicyclogermacrene, spathulenol, and β-caryophyllene predominated in E. langsdorffii . Seasonal variations in the oils were primarily related to chemical diversity, and E. lutescens was more affected than was E. langsdorffii . The E. langsdorffii oil collected in the DS was most toxic to the spider mite, while the oils of E. lutescens and E. langsdorffii collected in the RS drastically reduced its egg quantities. This study successfully determined the periods of greater oil production and acaricidal activity.
Resumo:
E-Lychnophoric acid 1, its derivative ester 2 and alcohol 3 killed 100% of trypomastigote blood forms of Trypanosoma cruzi at the concentrations of 13.86, 5.68, and 6.48 µg/mL, respectively. Conformational distribution calculations (AM1) of 1, 2 and 3 gave minimum energies for the conformers a, b, c, and d, which differ from each other only in the cyclononene ring geometry. Calculations (DFT/BLYP/6-31G*) of geometry optimization and chemical properties were performed for conformers of 1, 2, and 3. The theoretical results were numerically compared to the trypanocidal activity. Calculated values of atomic charge, orbital population, and vibrational frequencies showed that the C-4-C-5 pi-endocyclic bond does not affect the trypanocidal activity of the studied compounds. Nevertheless, the structure of the group at C-4 strongly influences the activity. However, the theoretical results indicated that the intra-ring (C-1 and C-9) and pi-exocycle (C-8 and C-14) carbons of caryophyllene-type structures promote the trypanocidal activity of these compounds.
Resumo:
The complexes of 4-chlorophenoxyacetates of Mn(II), Co(II), Ni(II) and Cu(II) have been synthesized as polycrystalline solids, and characterized by elemental analysis, spectroscopy, magnetic studies and also by X-ray diffraction and thermogravimetric measurements. The analysed complexes have the following colours: pink for Co(II), green for Ni(II), blue for Cu(II) and a pale pink for Mn(II) compounds. The carboxylate group binds as monodentate and bidentate ligands. On heating to 1173K in air the complexes decompose in several steps. At first, they dehydrate in one step to anhydrous salts, that next decompose to the oxides of respective metals. Their magnetic moments were determined in the range of 76-303K. The results reveal them to be high-spin complexes of weak ligand fields.
Resumo:
The complexes of 2-methoxyhenoxyacetates of Mn(II), Co(II), Ni(II) and Cu(II)with the general formula: M(C9H9O4)3·4H2O, where M(II) = Mn, Co, Ni and Cu have been synthesized and characterized by elemental analysis, IR spectroscopy, magnetic and thermogravimetric studies and also X-ray diffraction measurements. The complexes have colours typical for M(II) ions (Mn(II) - a pale pink, Co(II) - pink, Ni(II) - green, and Cu(II) - blue). The carboxylate group binds as monodentate and bidentate ligands. On heating to 1273K in air the complexes decompose in the same way. At first, they dehydrate in one step to anhydrous salts, that next decompose to the oxides of respective metals with the intermediate formation of the oxycarbonates. Their solubility in water at 293K is of the order of 10-5 mol·dm-3. The magnetic moments of analysed complexes were determined in the range of 76-303K. The results reveal them to be high-spin complexes of weak ligand fields.
Resumo:
Soil conditions under pasture were examined in a range of sites representing the sequence of conversion of forest to pasture at two locations in the vicinity of Ilha de Maracã, Roraima. Comparisons were made with adjacent savana. Soil bulk densities shown to increase after forest clearance and soil chemical data indicate that the initial beneficial effects on nutrient supply of burning forest debris are rather short-lived. Very low levels of available phosphorus prevail in areas of savanna and cultivated pasture of all ages. Variations in the status of older cultivated pastures are mainly attributable to different grazing levelt.
Resumo:
No tillage systems significantly influence the soil system, but knowledge about the effects on the mineralogy of tropical and subtropical soils is limited. This study evaluated the long-term effects (26 years) of no-tillage (NT) on aluminum hydroxy-interlayered minerals of a subtropical Oxisol in Southern Brazil (Guarapuava, PR), compared to the same soil under conventional tillage (CT). The clay fraction (< 2 µm) in soil samples of the surface horizons of a field experiment under both management systems was analyzed by X-ray diffraction (XRD) to identify and characterize Al hydroxy-interlayered minerals before and after treatment with sodium citrate to remove intra-layer material. Soil liquid (solution) and solid phases were also characterized. The contents of total organic C, exchangeable cations, P, and the values of extractable acidity and cation exchange capacity as well as electrical conductivity and levels of dissolved organic C, basic cations, aluminum, Si, and sulfur in the soil solution were higher in the NT soil. Under both soil management systems, more than 90 % of the total soluble Al was complexed with organic compounds, with similar Al activity. No significant changes were detected by 2:1 clay mineral XRD analyses in terms of extension or intercalation of Al-hydroxy-polymers in the no-tilled in comparison to the conventionally tilled soil. In both soil management systems, Al and Si activities in the soil solution indicated thermodynamic stability of 2:1 clay minerals with partially occupied by hydroxy-Al, suggesting deceleration in the intercalation process and a tendency of transforming clay minerals from extensive into partial intercalation.
Resumo:
The impact of agro-industrial organic wastes in the environment can be reduced when used in agriculture. From the standpoint of soil fertility, residue applications can increase the organic matter content and provide nutrients for plants. This study evaluated the effect of biological sludge from gelatin industry on the chemical properties of two Ultisols (loamy sand and sandy clay) and an Oxisol (clay). The experiment lasted 120 days and was carried out in laboratory in a completely randomized design with factorial arrangement, combining the three soils and six biological sludge rates (0, 100, 200, 300, 400, and 500 m³ ha-1), with three replications. Biological sludge rates of up to 500 m³ ha-1 decreased soil acidity and increased the effective cation exchange capacity (CEC) and N, Ca, Mg, and P availability, without exceeding the tolerance limit for Na. The increase in exchangeable base content, greater than the effective CEC, indicates that the major part of cations added by the sludge remains in solution and can be lost by leaching.
Characterization of soil chemical properties of strawberry fields using principal component analysis
Resumo:
One of the largest strawberry-producing municipalities of Rio Grande do Sul (RS) is Turuçu, in the South of the State. The strawberry production system adopted by farmers is similar to that used in other regions in Brazil and in the world. The main difference is related to the soil management, which can change the soil chemical properties during the strawberry cycle. This study had the objective of assessing the spatial and temporal distribution of soil fertility parameters using principal component analysis (PCA). Soil sampling was based on topography, dividing the field in three thirds: upper, middle and lower. From each of these thirds, five soil samples were randomly collected in the 0-0.20 m layer, to form a composite sample for each third. Four samples were taken during the strawberry cycle and the following properties were determined: soil organic matter (OM), soil total nitrogen (N), available phosphorus (P) and potassium (K), exchangeable calcium (Ca) and magnesium (Mg), soil pH (pH), cation exchange capacity (CEC) at pH 7.0, soil base (V%) and soil aluminum saturation(m%). No spatial variation was observed for any of the studied soil fertility parameters in the strawberry fields and temporal variation was only detected for available K. Phosphorus and K contents were always high or very high from the beginning of the strawberry cycle, while pH values ranged from very low to very high. Principal component analysis allowed the clustering of all strawberry fields based on variables related to soil acidity and organic matter content.
Resumo:
The objective of this experiment was to study the effects of soil management systems on the bulk density, chemical soil properties, and on the soil microbial activity on a Latossolo Vermelho distrófico (Oxisol). Soil samples were collected from plots under the following management conditions: a) natural dense "cerrado" vegetation (savanna); b) degraded Brachiaria decumbens pasture, 20 years old; c) no-tillage treatment with annual crop sequence (bean, corn, soybean and dark-oat in continuous rotation), 8 years old; d) conventional tillage treatment with crop residues added to the soil, and annual crop sequence, 10 years old. The continuous use of no-tillage system resulted in an increase in microbial biomass and decrease in soil basal respiration, therefore displaying evident long-term effects on the increase of soil C content. The no-tillage system also provided an improvement in bulk density and chemical properties of the soil. Hence, the no-tillage management system could be an alternative for the conservation and maintenance of physical and chemical conditions and the productive potential of "cerrado" soils.
Resumo:
The objective of this work was to characterize the chemical properties of white oat (Avena sativa) caryopsis and to determine the adaptability and stability of cultivars recommended for cultivation in the state of Rio Grande do Sul, Brazil. The trials were carried out in the 2007, 2008 and 2009 crop seasons, in three municipalities: Augusto Pestana, Capão do Leão, and Passo Fundo. Fifteen cultivars were evaluated in a randomized block design, with four replicates. The contents of protein, lipid, and nitrogen-free extract were evaluated in the caryopsis. Cultivar performances for the measured characters varied according to location and year of cultivation. The cultivar URS Guapa showed high content of nitrogen-free extract and low contents of protein and lipid in the caryopsis. 'FAPA Louise' showed high content of lipid, whereas 'Albasul', 'UPF 15', and 'UPF 18' showed high content of protein and low content of nitrogen-free extract. There is no evidence of an ideal biotype for the evaluated characters, which could simultaneously show high average performance, adaptability to favorable and unfavorable environments, and stability.
Resumo:
The physicochemical properties (solubilization, structural organization and stability) of meso-tetrakis(p-methoxyphenyl)porphyrin (TMPP), a promising photosensitizer for photodynamic therapy, solubilized in polymeric micelles of tri-block copolymers PluronicTM P-123 and F-127, were studied. The formulations obtained by the solid dispersion method led to monomerization of TMPP in these copolymers. Solubility studies showed that P-123 solubilizes double the photosensitizer than F-127. The self-aggregation phenomenon was affected by the [TMPP]/[poloxamer] ratio and medium temperature. The decrease in the temperature of these systems promoted the formation of different kinds of TMPP aggregates intrinsically connected with the structural changes occurring in the micelles.
Resumo:
"Panela" is a natural sweetener obtained by concentrating sugar cane juice and handmade in small factories. In the study carried out, the physical and chemical properties of two commercial brands of artisanal granulated panelas and of one made on an experimental level were determined. Three lots of each sample were analyzed. The parameters measured were moisture, a w, protein, ash, minerals, reducing sugars, sucrose, pH, color (L, a and b), insoluble solids (IS), transmittance a 720 nm and filterability. In addition, a qualitative test to detect sulphur dioxide was performed. The parameters with higher variability were moisture (1.66-4.36 g.100 g-1), a w (0.51-0.69), reducing sugars (4.58-11.48 g.100 g-1), pH (5.58-6.90), and color. Potassium was the most abundant mineral (229.52-1027.18 mg.100 g-1). An inverse relationship between IS and transmittance at 720 nm (R² = 0.96) and a direct relationship between IS and ash (R² = 0.94) were found. The sulphur dioxide test was negative for all the samples.
Resumo:
The aim of this study was to evaluate the physicochemical properties of avocado pulp of four different varieties (Avocado, Guatemala, Dickinson, and Butter pear) and to identify which has the greatest potential for oil extraction. Fresh avocado pulp was characterized by moisture, protein, fat, ash, carbohydrates and energy contents were determined. The carotenoids and chlorophyll contents were determined by the organic solvent extraction method. The results showed significant differences in the composition of the fruit when varieties are compared. However, the striking feature in all varieties is high lipid content; Avocado and Dickinson are the most suitable varieties for oil extraction, taking into account moisture content and the levels of lipids in the pulp. Moreover, it could be said that the variety Dickinson is the most affected by the parameters evaluated in terms of overall quality. Chlorophyll and carotenoids, fat-soluble pigments, showed a negative correlation with respect to lipids since it could be related to its function in the fruit. The varieties Avocado and Dickinson are an alternative to oil extraction having great commercial potential to be exploited thus avoiding waste and increasing farmers income.
Resumo:
Gelatin was extracted from the skin of tilapia (Oreochromis urolepis hornorum) and characterized according to its physical and chemical properties. It had pH 4.66, which is slightly higher than the values reported for gelatins processed by acid solubilization. In general, the ionic content was low, and the average yield of the process was 5.10 g/100 g. The proximal composition of the gelatin was similar to that of the commercial gelatins, with slightly higher moisture content. The tilapia skin gelatin had whitish-yellow color and average turbidity of 67 NTU.