130 resultados para cellular matrix
em Scielo Saúde Pública - SP
Resumo:
Reactivity of snails against parasites exhibits a primitive focal reaction, with encapsulation, phagocytosis and destruction of parasite larvae by macrophage-like cells - the hemocytes. This reaction mimics granulomatous inflammation seen in higher animals. However, different from the latter, little is known about the participation of extra-cellular matrix in such snail defense reactions. Normal and Schistosoma mansoni-infected Biomphalaria glabrata of different strains were submitted to cytological, histological, ultrastructural and biochemical methods in order to investigate the behavior of extra-cellular tissues at the site of anti-parasite reactions. In spite of the presence of two cell-types in peripheral hemolymph, only one cell-type was present at the sites of tissue reactions. Although pre-existent collagen and elastic fibers and microfibrils sometimes appeared slightly compressed around focal reactions, no evidences of duplication, synthesis or deposition of connective-tissue extra-cellular components were observed within or around the zones of reactive cell accumulations. Thus, tissue reactions against S. mansoni in the snail B. glabrata appeared exclusively dependent on one specific population of hemocytes.
Resumo:
Histological, ultrastructural, morphometric and immunohistochemical data obtained from the study of spleens removed by splenectomy from 34 patients with advanced hepatosplenic schistosomiasis revealed that the main alterations were congestive dilatation of the venous sinuses and diffuse thickening of the splenic cords. Splenic cord thickening was due to an increase of its matrix components, especially type IV collagen and laminin, with the conspicuous absence of interstitial collagens, either of type I or type III. Deposition of interstitial collagens (types I and III) occurred in scattered, small focal areas of the red pulp, but in the outside of the walls of the venous sinuses, in lymph follicles, marginal zone, in the vicinity of fibrous trabeculae and in sidero-sclerotic nodules. However, fibrosis was not a prominent change in schistosomal splenomegaly and thus the designation "fibro-congestive splenomegaly" seems inadequate. Lymph follicles exhibited variable degrees of atrophy, hyperplasia and fibrous replacement, sometimes all of them seen in different follicles of the same spleen and even in the same examined section. Changes in white pulp did not seem to greatly contribute to increasing spleen size and weight, when compared to the much more significant red pulp enlargement.
Resumo:
Administration of an antifibrotic agent as an adjunct to antihelmintic treatment with the objective of morbidity reduction was investigated in the murine schistosomiasis mansoni model. Antifibrotic, ß-aminopropionitrile treatment has a profound effect on the cellular matrix composition of the liver granuloma of Schistosoma mansoni infected mice when given alone, resulting in increase macrophage infiltration. These macrophages, in response to stimulation with soluble egg antigen or lipopolysaccharide produced elevated levels of nitric oxide but low levels of tumor necrosis factor alpha compared to untreated infected mice. This also correlated with reduced liver granuloma size. In spite of low numbers of eggs in the liver, mice receiving a combine treatment had a high level of resistance to a challenge infection compared with mice receiving only praziquantel. Those mice also exhibited a reduced lymphocyte proliferative response, similar to that of infected untreated mice. Antifibrotic treatment has an impact on the dynamic of the cellular nature of granulomas and impacts on the host immunity to infection
Resumo:
Angiogenesis has been recognised as a precursor of fibrosis in several pathologic conditions. Its participation has been demonstrated in schistosomiasis, both during periovular granuloma formation and in the genesis of schistosomal periportal fibrosis. Paradoxically, proliferation of new blood vessels, accompanied by production of vascular-endothelial growth factor, appeared prominent during fibrosis regression months after curative treatment of schistosomiasis. Thus, angiogenesis in schistosomiasis seems to have a two-way mode of action, participating both in fibrogenesis and in fibrosis degradation. Morphological observations presented here are in keeping with the possibility that, in the first case, angiogenesis allows pericytes to come in great numbers to the site of lesions and be detached from capillary walls and transformed into myofibroblasts, which are important extra-cellular matrix forming cells. During post-curative fibrosis regression, actin-containing pericytes appeared at various foci of tissue remodelling, especially at sites of repair of vascular lesions. The molecular and cell factors involved in both situations seem to be important subjects in need of further investigations and the schistosomiasis model certainly will be of great avail in this regard.
Resumo:
The thymus contains an extensive extracellular matrix. Although thymocytes express integrins capable of binding to matrix molecules, the functional significance of the matrix for T cell development is uncertain. We have shown that the matrix is associated with thymic fibroblasts which are required for the CD44+ CD25+ stage of double negative (CD4-8-) thymocyte development. The survival of cells at this stage is dependent on IL-7 and we propose that the role of fibroblasts is to present, via the matrix, IL-7 to developing T cells.
Resumo:
In an attempt to define the mouse-model for chronic Chagas' disease, a serological, histopathological and ultrastructural study as well as immunotyping of myocardium collagenic matrix were performed on Swiss mice, chronically infected with Trypanosoma cruzi strains: 21 SF and mambaí (Type II); PMN and Bolivia (Type III), spontaneously surviving after 154 to 468 days of infection. Haemagglutination and indirect immunofluorescence tests showed high titres of specific antibodies. The ultrastructural study disclosed the cellular constitution of the inflammatory infiltrate showing the predominance of monocytes, macrophages with intense phagocytic activity, fibroblasts, myofibroblasts and abundant collagen matrix suggesting the association of the inflammatory process with fibrogenesis in chronic chagasic cardiomyopathy. Artertolar and blood capillary alterations together with dissociation of cardiac cells from the capillary wall by edema and inflammation were related to ultrastructural lesions of myocardial cells. Rupture of parasitized cardiac myocells contribute to intensify the inflammatory process in focal areas. Collagen immunotyping showed the predominance of Types III and IV collagen. Collagen degradation and phagocytosis were present suggesting a reversibility of the fibrous process. The mouse model seems to be valuable in the study of the pathogenetic mechanisms in Chagas cardiomyopathy, providing that T. cruzi strains of low virulence and high pathogenecity are used.
Resumo:
In recent years, one of the most significant progress in the understanding of liver diseases was the demonstration that liver fibrosis is a dynamic process resulting from a balance between synthesis and degradation of several matrix components, collagen in particular. Thus, fibrosis has been found to be a very early event during liver diseases, be it of toxic, viral or parasitic origin, and to be spontaneously reversible, either partially or totally. In liver fibrosis cell matrix interactions are dependent on the existence of the many factors (sometimes acting in combination) which produce the same events at the cellular and molecular levels. These events are: (i) the recruitment of fiber-producing cells, (ii) their proliferation, (iii) the secretion of matrix constituents of the extracellular matrix, and (iv) the remodeling and degradation of the newly formed matrix. All these events represent, at least in principle, a target for a therapeutic intervention aimed at influencing the experimentally induced hepatic fibrosis. In this context, hepatosplenic schistosomiasis is of particular interest, being an immune cell-mediated granulomatous disease and a model of liver fibrosis allowing extensive studies in human and animals as well as providing original in vitro models.
Resumo:
Morbidity in schistosomiasis mansoni occurs primaryly as a result of the complications of hepatic fibrosis. Yet, the pathogenesis of schistosomal hepatic fibrosis is poorly understood. The fact that hepatic egg granuloma is the hallmark of this infection suggests a potential role for granulomatous inflamation in hepatic fibrogenesis. Our studies in a murine schistosomiasis model indicate that hepatic granuloma cells secrete a variety of fibrogenic cytokines that may initiate the scarring process. Among these cytokines, we identified a novel protein that we designated fibroplast stimulating factor-1 (FsF-1). FsF-1 is a lymphokine that can stimulate fibroplast growth and matrix synthesis. A notable feature of hepatic fibrosis in this model is that production of FsF-1 and other granuloma-derived fibrogenic cytokines is down-regulated in chronic infection, an event that may be under immunological control. The spontaneous reduction of FsF-1 secretion presumably accounts for reduced scar formation late in infection of mice. In the context of relevant clinical studies, our findings engender the hypothesis that Symmer's fibrosis may develop in a small suppopulation of individuals as a result of immunogenetically-determined dysregulation of fibrogenic cytokine production.
Resumo:
Mast cells and eosinophils actively participate in tissue repair and are prominent components of Schistosoma mansoni granulomas. Since pentoxifillyne (PTX) is an immunomodulatory and antifibrotic substance, we aimed to characterize, by morphological techniques, the effect of this drug on fibrosis developed inside murine hepatic schistosomal granulomatous reaction, beyond the quantification of eosinophil and mast cell populations. The drug (1 mg/100 g animal weight) was administrated from 35 to 90 days post-infection, when the animals were killed. The intragranulomatous interstitial collagen network was analyzed by confocal laser scanning microscopy, the number of eosinophils and mast cells was quantified and the results were validated by t-student test. Treatment did not interfere on the granuloma evolution but caused a significant decrease in the total and involutive number of hepatic granulomas (p = 0.01 and 0.001, respectivelly), and in the intragranulomatous accumulation of eosinophils (p = 0.0001). Otherwise, the number of mast cells was not significantly altered (p = 0.9); however, it was positively correlated with the number of granulomatous structures (r = 0.955). In conclusion, PTX does not affect development and collagen deposition in S. mansoni murine granuloma, but decreases the intragranulomatous eosinophil accumulation possibly due to its immunomodulatory capability, interfering in cellular recruitment and/or differentiation.
Resumo:
Typical and atypical enteropathogenic Escherichia coli (EPEC) are considered important bacterial causes of diarrhoea. Considering the repertoire of virulence genes, atypical EPEC (aEPEC) is a heterogeneous group, harbouring genes that are found in other diarrheagenic E. coli pathotypes, such as those encoding haemolysins. Haemolysins are cytolytic toxins that lyse host cells disrupting the function of the plasma membrane. In addition, these cytolysins mediate a connection to vascular tissue and/or blood components, such as plasma and cellular fibronectin. Therefore, we investigated the haemolytic activity of 72 aEPEC isolates and determined the correlation of this phenotype with the presence of genes encoding enterohaemolysins (Ehly) and cytolysin A (ClyA). In addition, the correlation between the expression of haemolysins and the ability of these secreted proteins to adhere to extracellular matrix (ECM) components was also assessed in this study. Our findings demonstrate that a subset of aEPEC presents haemolytic activity due to the expression of Ehlys and/or ClyA and that this activity is closely related to the ability of these isolates to bind to ECM components.
Resumo:
Extracellular matrix (ECM) molecules play important roles in the pathobiology of the major human central nervous system (CNS) inflammatory/demyelinating disease multiple sclerosis (MS). This mini-review highlights some recent work on CNS endothelial cell interactions with vascular basement membrane ECM as part of the cellular immune response, and roles for white matter ECM molecules in demyelination and remyelination in MS lesions. Recent basic and clinical investigations of MS emphasize axonal injury, not only in chronic MS plaques, but also in acute lesions; progressive axonal degeneration in normal-appearing white matter also may contribute to brain and spinal cord atrophy in MS patients. Remodeling of the interstitial white matter ECM molecules that affect axon regeneration, however, is incompletely characterized. Our ongoing immunohistochemical studies demonstrate enhanced ECM versican, a neurite and axon growth-inhibiting white matter ECM proteoglycan, and dermatan sulfate proteoglycans at the edges of inflammatory MS lesions. This suggests that enhanced proteoglycan deposition in the ECM and axonal growth inhibition may occur early and are involved in expansion of active lesions. Decreased ECM proteoglycans and their phagocytosis by macrophages along with myelin in plaque centers imply that there is "injury" to the ECM itself. These results indicate that white matter ECM proteoglycan alterations are integral to MS pathology at all disease stages and that they contribute to a CNS ECM that is inhospitable to axon regrowth/regeneration.
Resumo:
Cell migration is a crucial event in the general process of thymocyte differentiation. The cellular interactions involved in the control of this migration are beginning to be defined. At least chemokines and extracellular matrix proteins appear to be part of the game. Cells of the thymic microenvironment produce these two groups of molecules, whereas developing thymocytes express the corresponding receptors. Moreover, although chemokines and extracellular matrix can drive thymocyte migration per se, a combined role for these molecules appears to contribute to the resulting migration patterns of thymocytes in their various stages of differentiation. The dynamics of chemokine and extracellular matrix production and degradation is not yet well understood. However, matrix metalloproteinases are likely to play a role in the breakdown of intrathymic extracellular matrix contents. Thus, the physiological migration of thymocytes should be envisioned as a resulting vector of multiple, simultaneous and/or sequential stimuli involving chemokines, adhesive and de-adhesive extracellular matrix proteins, as well as matrix metalloproteinases. Accordingly, it is conceivable that any pathological change in any of these loops may result in the alteration of normal thymocyte migration. This seems to be the case in murine infection by the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas' disease. A better knowledge of the physiological mechanisms governing thymocyte migration will provide new clues for designing therapeutic strategies targeting developing T cells.
Resumo:
Normal central nervous system development relies on accurate intrinsic cellular programs as well as on extrinsic informative cues provided by extracellular molecules. Migration of neuronal progenitors from defined proliferative zones to their final location is a key event during embryonic and postnatal development. Extracellular matrix components play important roles in these processes, and interactions between neurons and extracellular matrix are fundamental for the normal development of the central nervous system. Guidance cues are provided by extracellular factors that orient neuronal migration. During cerebellar development, the extracellular matrix molecules laminin and fibronectin give support to neuronal precursor migration, while other molecules such as reelin, tenascin, and netrin orient their migration. Reelin and tenascin are extracellular matrix components that attract or repel neuronal precursors and axons during development through interaction with membrane receptors, and netrin associates with laminin and heparan sulfate proteoglycans, and binds to the extracellular matrix receptor integrins present on the neuronal surface. Altogether, the dynamic changes in the composition and distribution of extracellular matrix components provide external cues that direct neurons leaving their birthplaces to reach their correct final location. Understanding the molecular mechanisms that orient neurons to reach precisely their final location during development is fundamental to understand how neuronal misplacement leads to neurological diseases and eventually to find ways to treat them.
Resumo:
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common human life-threatening monogenic disorders. The disease is characterized by bilateral, progressive renal cystogenesis and cyst and kidney enlargement, often leading to end-stage renal disease, and may include extrarenal manifestations. ADPKD is caused by mutation in one of two genes, PKD1 and PKD2, which encode polycystin-1 (PC1) and polycystin-2 (PC2), respectively. PC2 is a non-selective cation channel permeable to Ca2+, while PC1 is thought to function as a membrane receptor. The cyst cell phenotype includes increased proliferation and apoptosis, dedifferentiation, defective planar polarity, and a secretory pattern associated with extracellular matrix remodeling. The two-hit model for cyst formation has been recently extended by the demonstration that early gene inactivation leads to rapid and diffuse development of renal cysts, while inactivation in adult life is followed by focal and late cyst formation. Renal ischemia/reperfusion, however, can function as a third hit, triggering rapid cyst development in kidneys with Pkd1 inactivation induced in adult life. The PC1-PC2 complex behaves as a sensor in the primary cilium, mediating signal transduction via Ca2+ signaling. The intracellular Ca2+ homeostasis is impaired in ADPKD, being apparently responsible for the cAMP accumulation and abnormal cell proliferative response to cAMP. Activated mammalian target for rapamycin (mTOR) and cell cycle dysregulation are also significant features of PKD. Based on the identification of pathways altered in PKD, a large number of preclinical studies have been performed and are underway, providing a basis for clinical trials in ADPKD and helping the design of future trials.
Resumo:
Among the most common features of highly invasive tumors, such as lung adenocarcinomas (AD) and squamous cell carcinomas (SqCC), is the massive degradation of the extracellular matrix. The remarkable qualitative and quantitative modifications of hyaluronidases (HAases), hyaluronan synthases (HAS), E-cadherin adhesion molecules, and the transforming growth factor β (TGF-β) may favor invasion, cellular motility, and proliferation. We examined HAase proteins (Hyal), HAS, E-cadherin, and TGF-β profiles in lung AD subtypes and SqCC obtained from smokers and non-smokers. Fifty-six patients, median age 64 years, who underwent lobectomy for AD (N = 31) and SqCC (N = 25) were included in the study. HAS-1, -2 and -3, and Hyal-1 and -3 were significantly more expressed by tumor cells than normal and stroma cells (P < 0.01). When stratified according to histologic types, HAS-3 and Hyal-1 immunoreactivity was significantly increased in tumor cells of AD (P = 0.01) and stroma of SqCC (P = 0.002), respectively. Tobacco history in patients with AD was significantly associated with increased HAS-3 immunoreactivity in tumor cells (P < 0.01). Stroma cells of SqCC from non-smokers presented a significant association with HAS-3 (P < 0.01). Hyal, HAS, E-cadherin, and TGF-β modulate a different tumor-induced invasive pathway in lung AD subgroups and SqCC. HAases in resected AD and SqCC were strongly related to the prognosis. Therefore, our findings suggest that strategies aimed at preventing high HAS-3 and Hyal-1 synthesis, or local responses to low TGF-β and E-cadherin, may have a greater impact in lung cancer prognosis.