135 resultados para biomass accumulation
em Scielo Saúde Pública - SP
Resumo:
The rosewood (Aniba rosaeodora Ducke) is a native tree species of Amazon rainforest growing naturally in acidic forest soils with reduced redox potential. However, this species can also been found growing in forest gaps containing oxide soils. Variations in the forms of mineral nitrogen (NO3- or NH4+) may be predicted in these different edaphic conditions. Considering that possibility, an experiment was carried out to analyze the effects of different NO3-:NH4+ ratios on the growth performance, mineral composition, chloroplastid pigment contents, photochemical efficiency photosystem II (PSII), and nitrate redutase activity (RN, E.C.1.6.6.1) on A. rosaeodora seedlings. Nine-month-old seedlings were grown in pots with a washed sand capacity of 7.5 kg and submitted to different NO3-:NH4+ ratios (T1 = 0:100%, T2 = 25:75%, T3 = 50:50%, T4 = 75:25%, and T5 = 100:0%). The lowest relative growth rate was observed when the NO3-:NH4+ ratio was equal to 0:100%. In general, high concentrations of NO3- rather than NH4+ favored a greater nutrient accumulation in different parts of the plant. For the chloroplastid pigment, the highest Chl a, Chl b, Chl tot, Chl a/b and Chl tot/Cx+c contents were found in the treatment with 75:25% of NO3-:NH4+, and for Chl b and Cx+c it was observed no difference. In addition, there was a higher photochemical efficiency of PSII (Fv/Fm) when high NO3- concentrations were used. A linear and positive response for the nitrate reductase activity was recorded when the nitrate content increased on the culture substrate. Our results suggest that A. rosaeodora seedlings have a better growth performance when the NO3- concentrations in the culture substrate were higher than the NH4+ concentrations.
Resumo:
Shoot biomass is considered a relevant component for crop yield, but relationships between biological productivity and grain yield in legume crops are usually difficult to establish. Two field experiments were carried out to investigate the relationships between grain yield, biomass production and N and P accumulation at reproductive stages of common bean (Phaseolus vulgaris) cultivars. Nine and 18 cultivars were grown on 16 m² plots in 1998 and 1999, respectively, with four replications. Crop biomass was sampled at four growth stages (flowering R6, pod setting R7, beginning of pod filling R8, and mid-pod filling R8.5), grain yield was measured at maturity, and N and P concentrations were determined in plant tissues. In both years, bean cultivars differed in grain yield, in root mass at R6 and R7 stages, and in shoot mass at R6 and R8.5, whereas at R7 and R8 differences in shoot mass were significant in 1998 only. In both years, grain yield did not correlate with shoot mass at R6 and R7 and with root mass at R6. Grain yield correlated with shoot mass at R8 in 1999 but not in 1998, with shoot mass at R8.5 and with root mass at R7 in both years. Path coefficient analysis indicated that shoot mass at R8.5 had a direct effect on grain yield in both years, that root mass at R7 had a direct effect on grain yield in 1998, and that in 1999 the amounts of N and P in shoots at R8.5 had indirect effects on grain yield via shoot mass at R8.5. A combined analysis of both experiments revealed that biomass accumulation, N and P in shoots at R6 and R7 as well as root mass at R6 were similar in both years. In 1998 however bean accumulated more root mass at R7 and more biomass and N and P in shoots at R8 and R8.5, resulting in a 57 % higher grain yield in 1998. This indicates that grain yield of different common bean cultivars is not intrinsically associated with vegetative vigor at flowering and that mechanisms during pod filling can strongly influence the final crop yield. The establishment of a profuse root system during pod setting, associated with the continuous N and P acquisition during early pod filling, seems to be relevant for higher grain yields of common bean.
Resumo:
Inoculation with arbuscular mycorrhizal fungi (AMF) of tree seedlings in the nursery is a biotechnological strategy to improve growth, survival after transplanting, biomass production and to reduce the use of fertilizers. Archontophoenix alexandrae and Euterpe edulis are palm species used in southern Brazil to produce the palm heart, the latter being included in the list of threatened species due to the overexploitation of its native population. The purpose of this paper was to evaluate the effect of mycorrhizal inoculation on growth and physiological parameters of A. alexandrae and E. edulis. After germination, the seedlings were inoculated (AMF) or not (CTL) with AMF in the treatments. Values of chlorophyll content, biomass and shoot phosphorus were not statistically different between the AMF and CTL treatments, after five months in the greenhouse. Inoculation with AMF significantly increased the levels of starch and soluble carbohydrates in shoots and roots of both species. Under field conditions, AMF had no effect on stem diameter and height after 12 and 24 months, but total plant biomass and leaf, stem and root biomass were greater in AMF than in CTL plants. The data indicated that AMF inoculation in the nursery has a strong effect on biomass accumulation after growing for 24 months under field conditions. Therefore, AMF inoculation should be considered an important strategy to increase growth and production of these economically important tropical palm species.
Resumo:
In recent years, the application of silicon (Si) in crops, including coffee, has become a common practice. The objective of this study was to assess the silicon uptake by coffee seedlings and its effects on plant growth, water and macro and micronutrient uptake. The research was conducted using nutrient solution in a greenhouse at the Departamento de Fitotecnia da Universidade Federal de Viçosa, in a completely randomized design with two treatments (with and without silicon) and three replications. Each plot consisted of three plants grown in a 800 mL vessel containing the treatment solutions. At every three days, water consumption, the concentration of OH - and the depletion of Si and K were assessed in the nutrient solutions. After 33 days, the plants were assessed with regard to their fresh and dry weight of leaves, roots and stem, shoot height and total length of the plant (shoot and root). Number of leaves and internodes, and the content and accumulation of silicon, macro, and micronutrients were also determined. The consumption of water, the amount of potassium uptake and, biomass accumulation were greater in plants grown in solution without silicon addition. However, the concentration of OH- in the solution and the amount of silicon uptake were greater in plants grown in solution with added silicon. Silicon accumulation was greater in leaves than in stem and roots. Silicon decreased coffee plant accumulation of phosphorus, potassium, calcium, zinc, copper and iron.
Resumo:
The silvopastoral system is a viable technological alternative to extensive cattle grazing, however, for it to be successful, forage grass genotypes adapted to reduced light need to be identified. The objective of this study was to select progenies of Panicum maximum tolerant to low light conditions for use in breeding programs and to study the genetic control and performance of some traits associated with shade tolerance. Six full-sib progenies were evaluated in full sun, 50% and 70% of light reduction in pots and subjected to cuttings. Progeny genotypic values (GV) increased with light reduction in relation to plant height (H) and specific leaf area (SLA). The traits total dry mass accumulation (DM) and leaf dry mass accumulation (LDM) had GV higher in 50% shade and intermediate in 70% shade. The GV of tiller number (TIL) and root dry mass accumulation (RDM) decreased with light reduction. The highest positive correlations were obtained for the traits H and RDM with SLA and DM; the highest negative correlations were between TIL and SLA and RDM, and H and LDM. The progenies showed higher tolerance to 50% light reduction and, among them, two stood out and will be used in breeding programs. It was also found that it is not necessary to evaluate some traits under all light conditions. All traits had high broad sense heritability and high genotypic correlation between progenies in all light intensities. There is genetic difference among the progenies regarding the response to different light intensities, which will allow selection for shade tolerance
Resumo:
Stomata are turgor-operated valves that control water loss and CO2 uptake during photosynthesis, and thereby water relation and plant biomass accumulation is closely related to stomatal functioning. The aims of this work were to document how stomata are distributed on the leaf surface and to determine if there is any significant variation in stomatal characteristics among Amazonian tree species, and finally to study the relationship between stomatal density (S D) and tree height. Thirty five trees (>17 m tall) of different species were selected. Stomatal type, density (S D), size (S S) and stomatal distribution on the leaf surface were determined using nail polish imprints taken from both leaf surfaces. Irrespective of tree species, stomata were located only on the abaxial surface (hypostomaty), with large variation in both S D and S S among species. S D ranged from 110 mm-2 in Neea altissima to 846 mm-2 in Qualea acuminata. However, in most species S D ranges between 271 and 543 mm-2, with a negative relationship between S D and S S. We also found a positive relationship between S D and tree height (r² = 0.14, p < 0.01), but no correlation was found between S D and leaf thickness. The most common stomatal type was anomocytic (37%), followed by paracytic (26%) and anisocytic (11%). We conclude that in Amazonian tree species, stomatal distribution on the leaf surface is a response most likely dependent on the genetic background of every species, rather than a reaction to environmental changes, and that somehow S D is influenced by environmental factors dependent on tree height.
Resumo:
Density-dependent responses are an important component of the organism life-history, and the resource allocation theory is a central concept to the life-history theory. When resource allocation varies due to environmental changes, a plant may change its morphology or physiology to cope with the new conditions, a process known as phenotypic plasticity. Our study aimed to evaluate how plant density affects Eichhornia crassipes allocation patterns. A total of 214 individuals in high and low density were collected. The density effect was observed in all plant traits examined including biomass accumulation. All traits of E. crassipes demonstrated higher values in high density conditions, except for biomass of leaves. Density exhibited a high influence on vegetative traits of E. crassipes, but did not influence allocation pattern, since a trade-off among the vegetative traits was not found. The morphological plasticity and the absence of trade-offs were discussed as strategies to overcome neighbor plants in competition situations. In high density conditions, there were clear changes in the morphology of the plants which probably allows for their survival in a highly competitive environment.
Resumo:
Soils of the coastal plains of Rio Grande do Sul, Brazil, are affected by salinization, which can hamper the establishment and development of crops in general, including rice. The application of high doses of KCl may aggravate the crop damage, due to the high saline content of this fertilizer. This study aimed to evaluate the effect of K fertilizer management on some properties of rice plant, grown in soils with different sodicity levels, and determine which attribute is best related to yield. The field study was conducted in four Albaqualfs with exchangeable Na percentages of 5.6, 9.0, 21 and 32 %. The management of KCl fertilizer consisted of the application of 90 kg ha-1 K2O broadcast, 90 kg ha-1 K2O in the row and 45 kg ha-1 K2O in the row + 45 kg ha-1 K2O at panicle initiation (PI). Plant density, dry matter evolution, height, SPAD (Soil Plant Analysis Development value indicating relative chlorophyll contents) index, tiller mass, 1,000-grain weight, panicle length and grain yield were evaluated. The plant density was damaged by application of K fertilizer in the row, especially at full dose (90 kg ha-1), at three sodicity levels, resulting in loss in biomass accumulation in later stages, affecting the crop yield, even at the lowest level of soil sodicity (5.6 %). All properties were correlated with yield; the highest positive correlation was found with plant density and shoot dry matter at full flowering, and a negative correlation with panicle length.
Resumo:
The objective of this work was to evaluate the influence of rootstocks and pruning times on yield and on nutrient content and extraction by pruned branches and harvested bunches of 'Niagara Rosada' grapevine in subtropical climate. The rootstocks 'IAC 766', 'IAC 572', 'IAC 313', 'IAC 571-6', and '106-8 Mgt' were evaluated. Treatments consisted of a combination between five rootstocks and three pruning times. At pruning, fresh and dry matter mass of branches were evaluated to estimate biomass accumulation. At harvest, yield was estimated by weighing of bunches per plant. Branches and bunches were sampled at pruning and at harvest, respectively, for nutrient content analysis. Nutrient content and dry matter mass of branches and bunches were used to estimate total nutrient extraction. 'Niagara Rosada' grapevine grafted onto the 'IAC 572' rootstock had the highest yield and dry matter mass of bunches, which were significantly different from the ones observed in 'Niagara Rosada'/'IAC 313'. 'Niagara Rosada' grafted onto the 'IAC 572' rootstock extracted the largest quantity of K, P, Mg, S, Cu, and Fe, differing from 'IAC 313' and 'IAC 766' in K and P extraction, and from '106-8 Mgt' in Mg and S extraction. Winter pruning results in higher yield, dry matter accumulation by branches, and total nutrient content and extraction.
Resumo:
A field experiment with pineapple (Smooth Cayenne) was carried out on an Ultisol located in the city of Agudos (22º30'S; 49º03'W), in the state of São Paulo, Brazil, with the objective of investigating the effects of rates and sources of potassium fertilizer on plant growth and fruit yield. The experiment was a complete factorial design (4x3) with four rates (0, 175, 350, and 700 kg ha-1 of K2O) and three combinations of K sources (100% KCl, 100% K2SO4, and 40% K2SO4 + 60% KCl). Plant growth and fruit yield were evaluated. Biomass accumulation of pineapple plants was impaired by chlorine added with potassium chloride. Fruit yield increased with potassium fertilization. At high rates of K application, fertilization with K2SO4 showed better results than with KCl. Detrimental effects of KCl were associated with excess of chlorine.
Resumo:
This study aimed to evaluate the growth characteristics of irrigated Vitória pineapple plants grown in semi-arid conditions and determine its developmental stages based on those characteristics. It was used a randomized block design with four replicates. The experimental treatments were: plant harvest at 270, 330, 390, 450, 510, 570, 690, 750, and 810 days after planting (DAP). The following variables were determined: plant height, stem diameter, D-leaf length, D-leaf fresh and dry mass, biomass production of plants and plant parts (organs), and vegetative biomass. Five phenological stages are proposed based on vegetative biomass production: < 20% biomass production (V1); 21-40% (V2); 41-60% (V3); 61-80% (V4); and > 80% (V5). The maximum growth rate for plant height, D-leaf length, and stem diameter was observed at the end of the phenological stage V1 (390-411 DAP), and at the end of stage V5 these plant traits had average values of 106, 82, and 7 cm, respectively. The maximum biomass accumulation rates were observed at stages V4 and V5, resulting in a final fruit yield and total fresh biomass of 72 t ha-1 and 326 t ha-1, respectively. Finally, we estimated that 80% of the accumulated biomass may remain in the field after fruit and slip harvest, and could be incorporated as plant residue into the soil.
Resumo:
The potential of three macrophytes, Azolla caroliniana, Salvinia minima, and Lemna gibba was assessed in this study to select plants for use in environmental remediation contaminated with atrazine. Experiments were carried out in a greenhouse over six days in pots containing Hoagland 0.25 strength nutritive solution at the following atrazine concentrations: 0; 0.01; 0.1; 1.0; 10.0 mg L-1. Decrease in biomass accumulation was observed in the three macrophytes, as well as toxic effects evidenced by the symptomatology developed by the plants which caused their deaths. The chlorosis and necrosis allowed to observe in the plants the high sensitivity of the three species to the herbicide. Plants presented low potential for removal of atrazine in solution when exposed to low concentrations of the herbicide. However, at the 10.0 mg L-1 atrazine concentration, L. gibba and A. caroliniana showed potential to remove the herbicide from the solution (0.016 and 0.018 mg atrazine per fresh mass gram, respectively). This fact likely resulted from the processes of atrazine adsorption by the dead material. The percentage of atrazine removed from the solution by the plants decreased when the plants were exposed to high concentrations of the pollutant. Azolla caroliniana, S. minima, and L. gibba were not effective in removing the herbicide from solution. The use of these species to remedy aquatic environments was shown to be limited.
Resumo:
Herbicidal potential of different plant aqueous extracts was evaluated against early seedling growth of rice weeds in pot studies. Plant aqueous extracts of sorghum (Sorghum bicolor), sunflower (Helianthus annuus), brassica (Brassica compestris), mulberry (Morris alba), eucalyptus (Eucalyptus camaldunensis), and winter cherry (Withania somnifera) at a spray volume of 18 L ha-1 each at the 2-4 leaf stage of rice weeds viz horse purslane (Trianthema portulacastrum) [broad-leaf], jungle rice (Echinochloa colona), and E. crus-galli (barnyard grass) [grasses] and purple nut sedge (Cyperus rotundus) and rice flat sedge (C. iria) [sedges]. The results showed significant interactive effects between plant aqueous extracts and the tested weed species for seedling growth attributes depicting that allelopathic inhibition was species-specific. Shoot and root length, lateral plant spread, biomass accumulation, and leaf chlorophyll contents in test species were all reduced by different extracts. The study suggested the suppressive potential of allelopathic plant aqueous extracts against rice weeds, and offered promise for their usefulness as a tool for weed management under field conditions.
Resumo:
In this study we evaluated photosynthetic characteristics and patterns of biomass accumulation in seedlings of two tree species from a Semideciduous Tropical Forest of Brazil. Seedlings of Trema micrantha (L.) Blum. (pioneer) and Hymenaea courbaril (L.) var. stilbocarpa (Hayne) Lee & Langenh. (climax) were grown for 4 months under low light (LL) (5%-8% of sunlight) and high light (HL) (100% of sunlight). Under HL, T. micrantha showed higher CO2 assimilation rates (A CO2) and light saturation than H. courbaril. Under LL, A CO2 were higher in H. courbaril. Under LL, total chlorophyll and carotenoid contents per unit leaf area were higher in H. courbaril. Chlorophyll a/b ratio was higher in T. micrantha under both light regimes. A CO2 and Fv/Fm ratio at both pre-dawn and midday in H. coubaril were lower in HL indicating chronic photoinhibition. Thus, the climax species was more susceptible to photoinhibition than the pioneer. However, H. courbaril produced higher total biomass under both treatments showing high efficiency in the maintenance of a positive carbon balance. Thus, both species expressed characteristics that favor growth under conditions that resemble their natural microenvironments, but H. courbaril also grew under HL. The ecophysiological range of responses to contrasting light levels of this climax plant seems to be broader than generally observed for other rainforest climax species. We propose that this could be related to the particular spatio-temporal light regime of the semideciduous forests.
Resumo:
Wetland vegetation typically includes aquatic macrophytes with high primary production capacities. The present study investigated how hydrological variations affect biomass allocation and primary productivity in the emergent macrophyte Eleocharis acutangula (Roxb.) Schult. Eleocharis acutangula ramets were collected from the Campelo Lagoon flood plain (21°39'S, 41°12'W and 21°37S, 41°11'W) between March/2005 and February/2006. This region experienced an unusually short rainy period between November/2005 and February/2006 that generated atypically high primary production levels (128gDWm-2month-1) and total biomass gains (447gDWm-2) in May and June/2005 respectively. Our data indicated that primary production and biomass allocation were strongly influenced by variations in wetland water levels and that macrophytes quickly invested in biomass accumulation when surface water levels rised.