55 resultados para beta-cell growth
em Scielo Saúde Pública - SP
Resumo:
The mechanism by which Ang II stimulates the growth of vascular smooth muscle cells was investigated by measuring the phosphorylation of mitogen-activated protein kinases ERK 1 and ERK 2. Ca2+ ionophore was found to have effects practically analogous to Ang II. We found that the signaling pathway involves the activation of epidermal growth factor receptor (EGFR) kinase, activation of the adaptor proteins Shc and Grb2, and the small G-protein Ras. Although the mechanism of AT1- (or Ca2+)-induced activation of EGFR is not yet clear, we have found that calcium-dependent protein kinase CAKß/PYK2 and c-Src are involved in this process. These studies indicate a transactivation mechanism that utilizes EGFR as a bridge between a Gq-coupled receptor and activation of phosphotyrosine generation.
Resumo:
Pancreatic ß cell function and insulin sensitivity, analyzed by the homeostasis model assessment, before and after 24 weeks of insulin therapy were studied and correlated with the presence of autoantibodies against ß cells (islet cell and anti-glutamic acid decarboxylase antibodies), in a group of 18 Brazilian lean adult non-insulin-dependent diabetes mellitus (NIDDM) patients with oral hypoglycemic agent failure (OHAF). Median fasting plasma glucose before and after insulin treatment was 19.1 and 8.5 mmol/l, respectively (P < 0.001); median HbA1c was 11.7% before vs 7.2% after insulin treatment (P < 0.001). Forty-four percent of the patients were positive (Ab+) to at least one autoantibody. Fasting C-peptide levels were lower in Ab+ than Ab- patients, both before (Ab+: 0.16 ± 0.09 vs Ab-: 0.41 ± 0.35 nmol/l, P < 0.003) and after insulin treatment (Ab+: 0.22 ± 0.13 vs Ab-: 0.44 ± 0.24 nmol/l, P < 0.03). Improvement of Hß was seen in Ab- (median before: 7.3 vs after insulin therapy: 33.4%, P = 0.003) but not in Ab+ patients (median before: 6.6 vs after insulin therapy: 20.9%). These results show that the OHAF observed in the 18 NIDDM patients studied was due mainly to two major causes: autoantibodies and ß cell desensitization. Autoantibodies against ß cells could account for 44% of OHAF, but Ab- patients may still present ß cell function recovery, mainly after a period of ß cell rest with insulin therapy. However, the effects of ß cell function recovery on the restoration of the response to oral hypoglycemic agents need to be determined.
Resumo:
Gamma-irradiation (gamma-IR) is extensively used in the treatment of hormone-resistant prostate carcinoma. The objective of the present study was to investigate the effects of 60Co gamma-IR on the growth, cell cycle arrest and cell death of the human prostate cancer cell line DU 145. The viability of DU 145 cells was measured by the Trypan blue exclusion assay and the 3(4,5-dimethylthiazol-2-yl)-2,5,diphenyltetrazolium bromide test. Bromodeoxyuridine incorporation was used for the determination of cell proliferation. Cell cycle arrest and cell death were analyzed by flow cytometry. Superoxide dismutase (SOD), specifically CuZnSOD and MnSOD protein expression, after 10 Gy gamma-IR, was determined by Western immunoblotting analysis. gamma-IR treatment had a significant (P < 0.001) antiproliferative and cytotoxic effect on DU 145 cells. Both effects were time and dose dependent. Also, the dose of gamma-IR which inhibited DNA synthesis and cell proliferation by 50% was 9.7 Gy. Furthermore, gamma-IR induced cell cycle arrest in the G2/M phase and the percentage of cells in the G2/M phase was increased from 15% (control) to 49% (IR cells), with a nonsignificant induction of apoptosis. Treatment with 10 Gy gamma-IR for 24, 48, and 72 h stimulated CuZnSOD and MnSOD protein expression in a time-dependent manner, approximately by 3- to 3.5-fold. These data suggest that CuZnSOD and MnSOD enzymes may play an important role in the gamma-IR-induced changes in DU 145 cell growth, cell cycle arrest and cell death.
Resumo:
A close correlation between vitamin D receptor (VDR) abundance and cell proliferation rate has been shown in NIH-3T3 fibroblasts, MCF-7 breast cancer and in HL-60 myeloblastic cells. We have now determined if this association occurs in other leukemic cell lines, U937 and K562, and if VDR content is related to c-myc expression, which is also linked to cell growth state. Upon phorbol myristate acetate (PMA) treatment, cells from the three lineages (HL-60, U937 and K562) differentiated and expressed specific surface antigens. All cell lines analyzed were growth inhibited by PMA and the doubling time was increased, mainly due to an increased fraction of cells in the G0/G1 phase, as determined by flow cytometry measurements of incorporated bromodeoxyuridine and cell DNA content. C-myc mRNA expression was down-regulated and closely correlated to cell growth arrest. However, VDR expression in leukemic cell lines, as determined by immunofluorescence and Northern blot assays, was not consistently changed upon inhibition of cell proliferation since VDR levels were down-regulated only in HL-60 cells. Our data suggest that VDR expression cannot be explained simply as a reflection of the leukemic cell growth state.
Resumo:
In C57Bl/6 strain mice vaccinated with radiation-attenuated cercariae of Schistosoma mansoni immune elimination of challenge parasites occurs in the lungs. Leococytes were recovered from the lungs of such mice by bronchoalveolar lavage and cultured in vitro with larval antigen; the profile of cytokines released was then analyzed. From 14 days after vaccination, BAL cultures contained infiltrating lymphocytes wich produced abundant quantitties of IFN-g and IL-3. Challenge of vaccinated mice resulted in a second influx of IFN-g nd IL-3- producing cells, earlier than after vaccination or in the appropriate contropls. Ablation studies revealed that CD4+ T cells were the source of IFN-g. The timing of cytokine production after vaccination, and challenge was coincident with the phases of macrophage activation previously reported. At no time could lymphocytes in BAL cultures to stimulated to proliferate with either larval Ag or mitogen, in contrast to splenocytes from the same mice. Furthermore, T cell growth factor activity was not detected in BAL cultures stimulated with Ag. We suggest that the lymphocytes recruited to the lungs are memory/effector cells, When Ag. released challenge schistosomula is presented to these cells, they respond by secreting cytokines wich mediate the formation of cellular aggregates around the parasites, blocking their onward migration.
Resumo:
A new cell line, PC-0199-BR, was established from embryonated eggs of the mosquito Psorophora confinnis. To date (September 2000) it has had 62 continuous passages. This is the first report of a cell line of mosquitoes belonging to the genus Psorophora. Cell growth initially was achieved in the MM/VP12 medium, supplemented with 20% fetal bovine serum; however, the subcultures were later adapted to Grace's medium with 10% fetal bovine serum. Cell morphology in the primary cultures was heterogeneous; but later in the established cell line, the predominant cell type was epithelioid. Cultured cells were predominantly diploid (2n=6); however, chromosome abnormalities were observed in a small proportion of the cells in later passages. C and G band patterns were also determined in the karyotype. The cell line isozyme profiles coincided with pupae and adult samples of the species taken from the same colony. A preliminary arbovirus susceptibility study for the cell line was undertaken. No evidence was observed of contamination of the cell line with bacteria, fungi or mycoplasma.
Resumo:
Stem cell factor (SCF) is a major mast cell growth factor, which could be involved in the local increase of mast cell number in the asthmatic airways. In vivo, SCF expression increases in asthmatic patients and this is reversed after treatment with glucocorticoids. In vitro in human lung fibroblasts in culture, IL-1beta, a pro-inflammatory cytokine, confirms this increased SCF mRNA and protein expression implying the MAP kinases p38 and ERK1/2 very early post-treatment, and glucocorticoids confirm this decrease. Surprisingly, glucocorticoids potentiate the IL-1beta-enhanced SCF expression at short term treatment, implying increased SCF mRNA stability and SCF gene transcription rate. This potentiation involves p38 and ERK1/2. Transfection experiments with the SCF promoter including intron1 also confirm this increase and decrease of SCF expression by IL-1beta and glucocorticoids, and the potentiation by glucocorticoids of the IL-1beta-induced SCF expression. Deletion of the GRE or kappaB sites abolishes this potentiation, and the effect of IL-1beta or glucocorticoids alone. DNA binding of GR and NF-kappaB are also demonstrated for these effects. In conclusion, this review concerns new mechanisms of regulation of SCF expression in inflammation that could lead to potential therapeutic strategy allowing to control mast cell number in the asthmatic airways.
Resumo:
Pothomorphe umbellata (L.) known on Brazil as Caapeba has a number of popular medicinal use, and it has been studied in relation to its pharmacological activity. Peroxidase specific activity (units/mg protein) was evaluated in callus cell culture samples of the P.umbellata, grown in two different MS medium (media 1 and media 2), submitted to 16 hours photoperiod or kept in darkness. Cell growth rate curve showed that the best growth indices were observed when media 2 submitted to the photoperiod regime was used, followed by the same media kept in darkness (stress condition). The results obtained also showed that the cell culture grown under stress conditions (darkness) lead to high content of peroxidase enzyme (an increase of 700% was observed). Kinetic constant values of 3.3 mmol.L-1 and 2,8 sec-1 were obtained for kM and v max,, respectively, using guaiacol as enzyme substrate.
Resumo:
OBJETIVO: avaliar o efeito da obesidade sobre a função das célulasbeta pancreáticas de pacientes portadoras de síndrome dos ovários policísticos (SOP). MÉTODOS: estudo transversal no qual foram avaliadas 82 pacientes portadoras de SOP, selecionadas de forma consecutiva, no momento do diagnóstico de SOP. Pacientes com índice de massa corporal (IMC) maior ou igual a 30 kg/m² foram consideradas SOP obesas (n=31). Valores de índice de massa corporal menores que este limite foram consideradas SOP não-obesas, o que correspondeu a 51 mulheres. Foram utilizadas a glicemia e a insulina de jejum para cálculo da função das células beta pancreáticas (HOMA-%beta-Cell) e da resistência à insulina (HOMA-IR e QUICKI) entre os grupos. Analisaram-se, também, variáveis secundárias como idade, idade da menarca, níveis séricos hormonais (testosterona, prolactina, LH e FSH) e de colesterol total, triglicerídeos, HDL colesterol e LDL-colesterol. RESULTADOS: a idade da menarca das pacientes obesas com SOP (11,7±1,8 anos) foi menor que as não-obesas (12,7±1,9) (p<0,05). As SOP obesas tiveram LH inferior (7,9±5,0 mUI/mL) ao valor encontrado nas não-obesas (10,6±6,0 mUI/mL) (p<0,05). Ambos os grupos apresentaram a média de HDL colesterol inferior a 50 mg/dL. As pacientes obesas apresentaram insulina basal (32,5±25,2 mUI/mL) e glicemia de jejum (115,9±40,7 mg/dL) mais elevadas que as não-obesas (8,8±6,6 mUI/mL e 90,2±8,9 mg/dL, respectivamente) (p<0,01). No grupo SOP obesas, a freqüência de resistência à insulina foi de 93 versus 25% no grupo SOP não-obesas (p<0,01). Foi verificada hiperfunção das células beta do pâncreas em 86% das obesas com SOP contra 41% das não-obesas portadoras de SOP (p<0,0001). CONCLUSÕES: as pacientes com SOP obesas apresentaram freqüência mais alta de resistência à insulina e hiperfunção de células beta do pâncreas quando comparadas com pacientes SOP não-obesas.
Resumo:
PURPOSES: To determine the basic expression of ABC transporters in an epithelial ovarian cancer cell line, and to investigate whether low concentrations of acetaminophen and ibuprofen inhibited the growth of this cell line in vitro. METHODS: TOV-21 G cells were exposed to different concentrations of acetaminophen (1.5 to 15 μg/mL) and ibuprofen (2.0 to 20 μg/mL) for 24 to 48 hours. The cellular growth was assessed using a cell viability assay. Cellular morphology was determined by fluorescence microscopy. The gene expression profile of ABC transporters was determined by assessing a panel including 42 genes of the ABC transporter superfamily. RESULTS: We observed a significant decrease in TOV-21 G cell growth after exposure to 15 μg/mL of acetaminophen for 24 (p=0.02) and 48 hours (p=0.01), or to 20 μg/mL of ibuprofen for 48 hours (p=0.04). Assessing the morphology of TOV-21 G cells did not reveal evidence of extensive apoptosis. TOV-21 G cells had a reduced expression of the genes ABCA1, ABCC3, ABCC4, ABCD3, ABCD4 and ABCE1 within the ABC transporter superfamily. CONCLUSIONS: This study provides in vitro evidence of inhibitory effects of growth in therapeutic concentrations of acetaminophen and ibuprofen on TOV-21 G cells. Additionally, TOV-21 G cells presented a reduced expression of the ABCA1, ABCC3, ABCC4, ABCD3, ABCD4 and ABCE1 transporters.
Resumo:
FGF2 elicits a strong mitogenic response in the mouse Y-1 adrenocortical tumor cell line, that includes a rapid and transient activation of the ERK-MAPK cascade and induction of the c-Fos protein. ACTH, itself a very weak mitogen, blocks the mitogenic response effect of FGF2 in the early and middle G1 phase, keeping both ERK-MAPK activation and c-Fos induction at maximal levels. Probing the mitogenic response of Y-1 cells to FGF2 with ACTH is likely to uncover reactions underlying the effects of this hormone on adrenocortical cell growth.
Resumo:
The nucleolus is the cellular site of ribosome biosynthesis. At this site, active ribosomal DNA (rDNA) genes are rapidly transcribed by RNA polymerase I (pol I) molecules. Recent advances in our understanding of the pol I transcription system have indicated that regulation of ribosomal RNA (rRNA) synthesis is a critical factor in cell growth. Importantly, the same signaling networks that control cell growth and proliferation and are deregulated in cancer appear to control pol I transcription. Therefore, the study of the biochemical basis for growth regulation of pol I transcription can provide basic information about the nuclear signaling network. Hopefully, this information may facilitate the search for drugs that can inhibit the growth of tumor cells by blocking pol I activation. In addition to its function in ribosome biogenesis, recent studies have revealed the prominent role of the nucleolus in cell senescence. These findings have stimulated a new wave of research on the functional relationship between the nucleolus and aging. The aim of this review is to provide an overview of some current topics in the area of nucleolus biology, and it has been written for a general readership.
Resumo:
In most of cells bradykinin (BK) induces intracellular calcium mobilization. In pancreatic beta cells intracellular calcium is a major signal for insulin secretion. In these cells, glucose metabolism yields intracellular ATP which blocks membrane potassium channels. The membrane depolarizes, voltage-dependent Ca2+ channels are activated and the intracellular calcium load allows insulin secretion. Repolarization occurs due to activation of the Ca2+-dependent K+ channel. The insulin secretion depends on the integrity of this oscillatory process (bursts). Therefore, we decided to determine whether BK (100 nM) induces bursts in the presence of a non-stimulatory glucose concentration (5.6 mM). During continuous membrane voltage recording, our results showed that bursts were obtained with 11 mM glucose, blocked with 5.6 mM glucose and recovered with 5.6 mM glucose plus 100 nM BK. Thus, the stimulatory process obtained in the presence of BK and of a non-stimulatory concentration of glucose in the present study suggests that BK may facilitate the action of glucose on beta cell secretion.
Resumo:
In the 70's, pancreatic islet transplantation arose as an attractive alternative to restore normoglycemia; however, the scarcity of donors and difficulties with allotransplants, even under immunosuppressive treatment, greatly hampered the use of this alternative. Several materials and devices have been developed to circumvent the problem of islet rejection by the recipient, but, so far, none has proved to be totally effective. A major barrier to transpose is the highly organized islet architecture and its physical and chemical setting in the pancreatic parenchyma. In order to tackle this problem, we assembled a multidisciplinary team that has been working towards setting up the Human Pancreatic Islets Unit at the Chemistry Institute of the University of São Paulo, to collect and process pancreas from human donors, upon consent, in order to produce purified, viable and functional islets to be used in transplants. Collaboration with the private enterprise has allowed access to the latest developed biomaterials for islet encapsulation and immunoisolation. Reasoning that the natural islet microenvironment should be mimicked for optimum viability and function, we set out to isolate extracellular matrix components from human pancreas, not only for analytical purposes, but also to be used as supplementary components of encapsulating materials. A protocol was designed to routinely culture different pancreatic tissues (islets, parenchyma and ducts) in the presence of several pancreatic extracellular matrix components and peptide growth factors to enrich the beta cell population in vitro before transplantation into patients. In addition to representing a therapeutic promise, this initiative is an example of productive partnership between the medical and scientific sectors of the university and private enterprises.