15 resultados para autoregressive distributed lag model
em Scielo Saúde Pública - SP
Resumo:
Intensification of agricultural production without a sound management and regulations can lead to severe environmental problems, as in Western Santa Catarina State, Brazil, where intensive swine production has caused large accumulations of manure and consequently water pollution. Natural resource scientists are asked by decision-makers for advice on management and regulatory decisions. Distributed environmental models are useful tools, since they can be used to explore consequences of various management practices. However, in many areas of the world, quantitative data for model calibration and validation are lacking. The data-intensive distributed environmental model AgNPS was applied in a data-poor environment, the upper catchment (2,520 ha) of the Ariranhazinho River, near the city of Seara, in Santa Catarina State. Steps included data preparation, cell size selection, sensitivity analysis, model calibration and application to different management scenarios. The model was calibrated based on a best guess for model parameters and on a pragmatic sensitivity analysis. The parameters were adjusted to match model outputs (runoff volume, peak runoff rate and sediment concentration) closely with the sparse observed data. A modelling grid cell resolution of 150 m adduced appropriate and computer-fit results. The rainfall runoff response of the AgNPS model was calibrated using three separate rainfall ranges (< 25, 25-60, > 60 mm). Predicted sediment concentrations were consistently six to ten times higher than observed, probably due to sediment trapping along vegetated channel banks. Predicted N and P concentrations in stream water ranged from just below to well above regulatory norms. Expert knowledge of the area, in addition to experience reported in the literature, was able to compensate in part for limited calibration data. Several scenarios (actual, recommended and excessive manure applications, and point source pollution from swine operations) could be compared by the model, using a relative ranking rather than quantitative predictions.
Resumo:
OBJECTIVE: To assess the lag structure between air pollution exposure and elderly cardiovascular diseases hospital admissions, by gender. METHODS: Health data of people aged 64 years or older was stratified by gender in São Paulo city, Southeastern Brazil, from 1996 to 2001. Daily levels of air pollutants (CO, PM10, O3, NO2, and SO2) , minimum temperature, and relative humidity were also analyzed. It were fitted generalized additive Poisson regressions and used constrained distributed lag models adjusted for long time trend, weekdays, weather and holidays to assess the lagged effects of air pollutants on hospital admissions up to 20 days after exposure. RESULTS: Interquartile range increases in PM10 (26.21 mug/m³) and SO2 (10.73 mug/m³) were associated with 3.17% (95% CI: 2.09-4.25) increase in congestive heart failure and 0.89% (95% CI: 0.18-1.61) increase in total cardiovascular diseases at lag 0, respectively. Effects were higher among female group for most of the analyzed outcomes. Effects of air pollutants for different outcomes and gender groups were predominately acute and some "harvesting" were found. CONLUSIONS: The results show that cardiovascular diseases in São Paulo are strongly affected by air pollution.
Resumo:
OBJECTIVE: Myocardial infarction is an acute and severe cardiovascular disease that generally leads to patient admissions to intensive care units and few cases are initially admitted to infirmaries. The objective of the study was to assess whether estimates of air pollution effects on myocardial infarction morbidity are modified by the source of health information. METHODS: The study was carried out in hospitals of the Brazilian Health System in the city of São Paulo, Southern Brazil. A time series study (1998-1999) was performed using two outcomes: infarction admissions to infirmaries and to intensive care units, both for people older than 64 years of age. Generalized linear models controlling for seasonality (long and short-term trends) and weather were used. The eight-day cumulative effects of air pollutants were assessed using third degree polynomial distributed lag models. RESULTS: Almost 70% of daily hospital admissions due to myocardial infarction were to infirmaries. Despite that, the effects of air pollutants on infarction were higher for intensive care units admissions. All pollutants were positively associated with the study outcomes but SO2 presented the strongest statistically significant association. An interquartile range increase on SO2 concentration was associated with increases of 13% (95% CI: 6-19) and 8% (95% CI: 2-13) of intensive care units and infirmary infarction admissions, respectively. CONCLUSIONS: It may be assumed there is a misclassification of myocardial infarction admissions to infirmaries leading to overestimation. Also, despite the absolute number of events, admissions to intensive care units data provides a more adequate estimate of the magnitude of air pollution effects on infarction admissions.
Resumo:
ABSTRACT OBJECTIVE To analyze the impact of air pollution on respiratory and cardiovascular morbidity of children and adults in the city of Vitoria, state of Espirito Santo. METHODS A study was carried out using time-series models via Poisson regression from hospitalization and pollutant data in Vitoria, ES, Southeastern Brazil, from 2001 to 2006. Fine particulate matter (PM10), sulfur dioxide (SO2), and ozone (O3) were tested as independent variables in simple and cumulative lags of up to five days. Temperature, humidity and variables indicating weekdays and city holidays were added as control variables in the models. RESULTS For each increment of 10 µg/m3 of the pollutants PM10, SO2, and O3, the percentage of relative risk (%RR) for hospitalizations due to total respiratory diseases increased 9.67 (95%CI 11.84-7.54), 6.98 (95%CI 9.98-4.17) and 1.93 (95%CI 2.95-0.93), respectively. We found %RR = 6.60 (95%CI 9.53-3.75), %RR = 5.19 (95%CI 9.01-1.5), and %RR = 3.68 (95%CI 5.07-2.31) for respiratory diseases in children under the age of five years for PM10, SO2, and O3, respectively. Cardiovascular diseases showed a significant relationship with O3, with %RR = 2.11 (95%CI 3.18-1.06). CONCLUSIONS Respiratory diseases presented a stronger and more consistent relationship with the pollutants researched in Vitoria. A better dose-response relationship was observed when using cumulative lags in polynomial distributed lag models.
Resumo:
Heart rate variability (HRV) provides important information about cardiac autonomic modulation. Since it is a noninvasive and inexpensive method, HRV has been used to evaluate several parameters of cardiovascular health. However, the internal reproducibility of this method has been challenged in some studies. Our aim was to determine the intra-individual reproducibility of HRV parameters in short-term recordings obtained in supine and orthostatic positions. Electrocardiographic (ECG) recordings were obtained from 30 healthy subjects (20-49 years, 14 men) using a digital apparatus (sampling ratio = 250 Hz). ECG was recorded for 10 min in the supine position and for 10 min in the orthostatic position. The procedure was repeated 2-3 h later. Time and frequency domain analyses were performed. Frequency domain included low (LF, 0.04-0.15 Hz) and high frequency (HF, 0.15-0.4 Hz) bands. Power spectral analysis was performed by the autoregressive method and model order was set at 16. Intra-subject agreement was assessed by linear regression analysis, test of difference in variances and limits of agreement. Most HRV measures (pNN50, RMSSD, LF, HF, and LF/HF ratio) were reproducible independent of body position. Better correlation indexes (r > 0.6) were obtained in the orthostatic position. Bland-Altman plots revealed that most values were inside the agreement limits, indicating concordance between measures. Only SDNN and NNv in the supine position were not reproducible. Our results showed reproducibility of HRV parameters when recorded in the same individual with a short time between two exams. The increased sympathetic activity occurring in the orthostatic position probably facilitates reproducibility of the HRV indexes.
Resumo:
Maintenance of thermal homeostasis in rats fed a high-fat diet (HFD) is associated with changes in their thermal balance. The thermodynamic relationship between heat dissipation and energy storage is altered by the ingestion of high-energy diet content. Observation of thermal registers of core temperature behavior, in humans and rodents, permits identification of some characteristics of time series, such as autoreference and stationarity that fit adequately to a stochastic analysis. To identify this change, we used, for the first time, a stochastic autoregressive model, the concepts of which match those associated with physiological systems involved and applied in male HFD rats compared with their appropriate standard food intake age-matched male controls (n=7 per group). By analyzing a recorded temperature time series, we were able to identify when thermal homeostasis would be affected by a new diet. The autoregressive time series model (AR model) was used to predict the occurrence of thermal homeostasis, and this model proved to be very effective in distinguishing such a physiological disorder. Thus, we infer from the results of our study that maximum entropy distribution as a means for stochastic characterization of temperature time series registers may be established as an important and early tool to aid in the diagnosis and prevention of metabolic diseases due to their ability to detect small variations in thermal profile.
Resumo:
INTRODUCTION: Forecasting dengue cases in a population by using time-series models can provide useful information that can be used to facilitate the planning of public health interventions. The objective of this article was to develop a forecasting model for dengue incidence in Campinas, southeast Brazil, considering the Box-Jenkins modeling approach. METHODS: The forecasting model for dengue incidence was performed with R software using the seasonal autoregressive integrated moving average (SARIMA) model. We fitted a model based on the reported monthly incidence of dengue from 1998 to 2008, and we validated the model using the data collected between January and December of 2009. RESULTS: SARIMA (2,1,2) (1,1,1)12 was the model with the best fit for data. This model indicated that the number of dengue cases in a given month can be estimated by the number of dengue cases occurring one, two and twelve months prior. The predicted values for 2009 are relatively close to the observed values. CONCLUSIONS: The results of this article indicate that SARIMA models are useful tools for monitoring dengue incidence. We also observe that the SARIMA model is capable of representing with relative precision the number of cases in a next year.
Resumo:
AbstractBackground:Although nutritional, metabolic and cardiovascular abnormalities are commonly seen in experimental studies of obesity, it is uncertain whether these effects result from the treatment or from body adiposity.Objective:To evaluate the influence of treatment and body composition on metabolic and cardiovascular aspects in rats receiving high saturated fat diet.Methods:Sixteen Wistar rats were used, distributed into two groups, the control (C) group, treated with isocaloric diet (2.93 kcal/g) and an obese (OB) group, treated with high-fat diet (3.64 kcal/g). The study period was 20 weeks. Analyses of nutritional behavior, body composition, glycemia, cholesterolemia, lipemia, systolic arterial pressure, echocardiography, and cardiac histology were performed.Results:High-fat diet associates with manifestations of obesity, accompanied by changes in glycemia, cardiomyocyte hypertrophy, and myocardial interstitial fibrosis. After adjusting for adiposity, the metabolic effects were normalized, whereas differences in morphometric changes between groups were maintained.Conclusion:It was concluded that adiposity body composition has a stronger association with metabolic disturbances in obese rodents, whereas the high-fat dietary intervention is found to be more related to cardiac morphological changes in experimental models of diet-induced obesity.
Resumo:
The Bartlett-Lewis Rectangular Pulse Modified (BLPRM) model simulates the precipitous slide in the hourly and sub-hourly and has six parameters for each of the twelve months of the year. This study aimed to evaluate the behavior of precipitation series in the duration of 15 min, obtained by simulation using the model BLPRM in situations: (a) where the parameters are estimated from a combination of statistics, creating five different sets; (b) suitability of the model to generate rain. To adjust the parameters were used rain gauge records of Pelotas/RS/Brazil, which statistics were estimated - mean, variance, covariance, autocorrelation coefficient of lag 1, the proportion of dry days in the period considered. The results showed that the parameters related to the time of onset of precipitation (λ) and intensities (μx) were the most stable and the most unstable were ν parameter, related to rain duration. The BLPRM model adequately represented the mean, variance, and proportion of the dry period of the series of precipitation lasting 15 min and, the time dependence of the heights of rain, represented autocorrelation coefficient of the first retardation was statistically less simulated series suitability for the duration of 15 min.
Resumo:
PURPOSE:Pregnant women have a 2-3 fold higher probability of developing restless legs syndrome (RLS – sleep-related movement disorders) than general population. This study aims to evaluate the behavior and locomotion of rats during pregnancy in order to verify if part of these animals exhibit some RLS-like features.METHODS:We used 14 female 80-day-old Wistar rats that weighed between 200 and 250 g. The rats were distributed into control (CTRL) and pregnant (PN) groups. After a baseline evaluation of their behavior and locomotor activity in an open-field environment, the PN group was inducted into pregnancy, and their behavior and locomotor activity were evaluated on days 3, 10 and 19 of pregnancy and in the post-lactation period in parallel with the CTRL group. The serum iron and transferrin levels in the CTRL and PN groups were analyzed in blood collected after euthanasia by decapitation.RESULTS:There were no significant differences in the total ambulation, grooming events, fecal boli or urine pools between the CTRL and PN groups. However, the PN group exhibited fewer rearing events, increased grooming time and reduced immobilization time than the CTRL group (ANOVA, p<0.05).CONCLUSION:These results suggest that pregnant rats show behavioral and locomotor alterations similar to those observed in animal models of RLS, demonstrating to be a possible animal model of this sleep disorder.
Resumo:
A parallel pseudo-spectral method for the simulation in distributed memory computers of the shallow-water equations in primitive form was developed and used on the study of turbulent shallow-waters LES models for orographic subgrid-scale perturbations. The main characteristics of the code are: momentum equations integrated in time using an accurate pseudo-spectral technique; Eulerian treatment of advective terms; and parallelization of the code based on a domain decomposition technique. The parallel pseudo-spectral code is efficient on various architectures. It gives high performance onvector computers and good speedup on distributed memory systems. The code is being used for the study of the interaction mechanisms in shallow-water ows with regular as well as random orography with a prescribed spectrum of elevations. Simulations show the evolution of small scale vortical motions from the interaction of the large scale flow and the small-scale orographic perturbations. These interactions transfer energy from the large-scale motions to the small (usually unresolved) scales. The possibility of including the parametrization of this effects in turbulent LES subgrid-stress models for the shallow-water equations is addressed.
Resumo:
Circadian timing is structured in such a way as to receive information from the external and internal environments, and its function is the timing organization of the physiological and behavioral processes in a circadian pattern. In mammals, the circadian timing system consists of a group of structures, which includes the suprachiasmatic nucleus (SCN), the intergeniculate leaflet and the pineal gland. Neuron groups working as a biological pacemaker are found in the SCN, forming a biological master clock. We present here a simple model for the circadian timing system of mammals, which is able to reproduce two fundamental characteristics of biological rhythms: the endogenous generation of pulses and synchronization with the light-dark cycle. In this model, the biological pacemaker of the SCN was modeled as a set of 1000 homogeneously distributed coupled oscillators with long-range coupling forming a spherical lattice. The characteristics of the oscillator set were defined taking into account the Kuramoto's oscillator dynamics, but we used a new method for estimating the equilibrium order parameter. Simultaneous activities of the excitatory and inhibitory synapses on the elements of the circadian timing circuit at each instant were modeled by specific equations for synaptic events. All simulation programs were written in Fortran 77, compiled and run on PC DOS computers. Our model exhibited responses in agreement with physiological patterns. The values of output frequency of the oscillator system (maximal value of 3.9 Hz) were of the order of magnitude of the firing frequencies recorded in suprachiasmatic neurons of rodents in vivo and in vitro (from 1.8 to 5.4 Hz).
Resumo:
The autonomic nervous system plays an important role in physiological and pathological conditions, and has been extensively evaluated by parametric and non-parametric spectral analysis. To compare the results obtained with fast Fourier transform (FFT) and the autoregressive (AR) method, we performed a comprehensive comparative study using data from humans and rats during pharmacological blockade (in rats), a postural test (in humans), and in the hypertensive state (in both humans and rats). Although postural hypotension in humans induced an increase in normalized low-frequency (LFnu) of systolic blood pressure, the increase in the ratio was detected only by AR. In rats, AR and FFT analysis did not agree for LFnu and high frequency (HFnu) under basal conditions and after vagal blockade. The increase in the LF/HF ratio of the pulse interval, induced by methylatropine, was detected only by FFT. In hypertensive patients, changes in LF and HF for systolic blood pressure were observed only by AR; FFT was able to detect the reduction in both blood pressure variance and total power. In hypertensive rats, AR presented different values of variance and total power for systolic blood pressure. Moreover, AR and FFT presented discordant results for LF, LFnu, HF, LF/HF ratio, and total power for pulse interval. We provide evidence for disagreement in 23% of the indices of blood pressure and heart rate variability in humans and 67% discordance in rats when these variables are evaluated by AR and FFT under physiological and pathological conditions. The overall disagreement between AR and FFT in this study was 43%.
Resumo:
An enterovirus 71 (EV71) vaccine for the prevention of hand, foot, and mouth disease (HMFD) is available, but it is not known whether the EV71 vaccine cross-protects against Coxsackievirus (CV) infection. Furthermore, although an inactivated circulating CVA16 Changchun 024 (CC024) strain vaccine candidate is effective in newborn mice, the CC024 strain causes severe lesions in muscle and lung tissues. Therefore, an effective CV vaccine with improved pathogenic safety is needed. The aim of this study was to evaluate the in vivo safety and in vitro replication capability of a noncirculating CVA16 SHZH05 strain. The replication capacity of circulating CVA16 strains CC024, CC045, CC090 and CC163 and the noncirculating SHZH05 strain was evaluated by cytopathic effect in different cell lines. The replication capacity and pathogenicity of the CC024 and SHZH05 strains were also evaluated in a neonatal mouse model. Histopathological and viral load analyses demonstrated that the SHZH05 strain had an in vitro replication capacity comparable to the four CC strains. The CC024, but not the SHZH05 strain, became distributed in a variety of tissues and caused severe lesions and mortality in neonatal mice. The differences in replication capacity and in vivo pathogenicity of the CC024 and SHZH05 strains may result from differences in the nucleotide and amino acid sequences of viral functional polyproteins P1, P2 and P3. Our findings suggest that the noncirculating SHZH05 strain may be a safer CV vaccine candidate than the CC024 strain.
Resumo:
A comparative analysis of the theoretical-experimental study, developed by Hsu on the hydration of Amsoy 71 soybean grain, was performed through several soaking experiments using CD 202 soybean at 10, 20, 30, 40, and 50 °C, measuring moisture content over time. The results showed that CD 202 soybean equilibrium moisture content, Xeq, does not depend on temperature and is 21% higher than that found by Hsu, suggesting that soybean cultivar exerts great influence on Xeq. The Hsu model was numerically solved and its parameters were adjusted by the least squares method, with maximum deviations of +/- 10% relative to the experimental values. The limiting step in the mass transfer process during hydration corresponds to water diffusion inside the grain, leading to radial moisture gradients that decrease over time and with an increase in temperature. Regardless of the soybean cultivar, diffusivity increases as temperature or moisture content increases. However, the values of this transport property for Amsoy 71 were superior to those of CD 202, very close at the beginning of hydration at 20 °C and almost three times higher at the end of hydration at 50 °C.