118 resultados para assessment of left ventricular systolic function,
em Scielo Saúde Pública - SP
Resumo:
OBJECTIVE: To study echocardiographic parameters of left ventricular systolic function and valvar regurgitation under pharmacological influence in mildly symptomatic patients with chronic mitral regurgitation (MR). METHODS: We carried out a double-blind placebo controlled study in 12 patients with MR, mean aged 12.5 years old, who were randomized in 4 phases: A) digoxin; B) enalapril; C) digoxin + enalapril; D) placebo. The medication was administered for 30 days in each phase, and the following variables were analyzed: shortening and ejection fractions, wall stress index of left ventricle, left ventricular meridional end-systolic wall stress, Doppler-derived mean rate of left ventricular pressure rise (mean dP/dt), stroke volume and MR jet area. The clinical variables analysed were heart rate and systemic arterial pressure. RESULTS: No significant variation was observed in the clinical variables analysed. The shortening and ejection fraction, the mean dP/dt and stroke volume significantly increased and the wall stress index of left ventricle, the meridional left ventricular end systolic wall stress and the mitral regurgitation jet area decreased in the phases with medication as compared with that in the placebo phase. CONCLUSION: The parameters of left ventricular systolic function improved significantly and the degree of MR decreased with the isolated administration of digoxin or enalapril in mildly symptomatic patients with chronic MR. The combination of the drugs, however, did not show better results.
Resumo:
Patients with heart failure who have undergone partial left ventriculotomy improve resting left ventricular systolic function, but have limited functional capacity. We studied systolic and diastolic left ventricular function at rest and during submaximal exercise in patients with previous partial left ventriculotomy and in patients with heart failure who had not been operated, matched for maximal and submaximal exercise capacity. Nine patients with heart failure previously submitted to partial left ventriculotomy were compared with 9 patients with heart failure who had not been operated. All patients performed a cardiopulmonary exercise test with measurement of peak oxygen uptake and anaerobic threshold. Radionuclide left ventriculography was performed to analyze ejection fraction and peak filling rate at rest and during exercise at the intensity corresponding to the anaerobic threshold. Groups presented similar exercise capacity evaluated by peak oxygen uptake and at anaerobic threshold. Maximal heart rate was lower in the partial ventriculotomy group compared to the heart failure group (119 ± 20 vs 149 ± 21 bpm; P < 0.05). Ejection fraction at rest was higher in the partial ventriculotomy group as compared to the heart failure group (41 ± 12 vs 32 ± 9%; P < 0.0125); however, ejection fraction increased from rest to anaerobic threshold only in the heart failure group (partial ventriculotomy = 44 ± 17%; P = non-significant vs rest; heart failure = 39 ± 11%; P < 0.0125 vs rest; P < 0.0125 vs change in the partial ventriculotomy group). Peak filling rate was similar at rest and increased similarly in both groups at the anaerobic threshold intensity (partial ventriculotomy = 2.28 ± 0.55 EDV/s; heart failure = 2.52 ± 1.07 EDV/s; P < 0.0125; P > 0.05 vs change in partial ventriculotomy group). The abnormal responses demonstrated here may contribute to the limited exercise capacity of patients with partial left ventriculotomy despite the improvement in resting left ventricular systolic function.
Resumo:
Introduction The association between cardiac autonomic and left ventricular (LV) dysfunction in Chagas disease (ChD) is controversial. Methods A standardized protocol that includes the Valsalva maneuver, a respiratory sinus arrhythmia (RSA) test, and an echocardiographic examination was used. Spearman correlation coefficients (rho) were used to investigate associations. Results The study population consisted of 118 ChD patients undergoing current medical treatment, with an average LV ejection fraction of 51.4±2.6%. The LV ejection fraction and diastolic dimension were correlated with the Valsalva index (rho=0.358, p<0.001 and rho=-0.266, p=0.004, respectively) and the RSA (rho=0.391, p<0.001 and rho=-0.311, p<0.001, respectively). Conclusions The impairment of LV function is directly associated with a reduction of cardiac autonomic modulation in ChD.
Resumo:
OBJECTIVE: To test the hypothesis that left ventricular hypertrophy (LVH) reduces the electrocardiographic and functional effects of right coronary artery occlusion. METHODS: We analysed 215 patients (166 males and 49 women,age of 58.9±10.6 years), with occlusion of the right coronary artery without other associated lesions. There was no significant difference (p>0.05) in age and gender distribution between the 78 patients with LVH (left ventricular mass >100g/m²) (Group A) when compared with the 137 patients without LVH (left ventricular mass <100g/m²) (Group B). RESULTS: The electrocardiographic finding of transmural necrosis was more often found in group B patients than in group A patients (56.9% and 30.8%, respectively; p<0.05). The left ventricular function parameters of group A were better than those of group B: the ratio end-diastolic pressure/systolic pressure (EDP/SP) (A: 0.108±0.036; B: 0.121±0.050; p<0.05); the end-diastolic volume index (A: 75.9±31.3ml/m²; B: 88.0±31.0ml/m²; p<0.01); the end-systolic volume index (A: 16.0±10.0ml/m²; B: 27.0 ±20.0ml/m²; p<0.001); the ejection fraction (A 78.6±10.8%; B 67.7±17.9%; p<0.001); the anteroinferior shortening (A: 43.9±10.3%; B: 35.1±12.8%; p<0.001). A higher degree of coronary tortuosity was observed in group A than in group B (78.2% and 24.1%; p<0.001) and also a more frequent absent or minimal diaphragmatic hypokinetic area (A: 80.8%; B: 54.0%; p<0.05). CONCLUSION: LVH reduces the effects of myocardial sequela and protects LV function when right coronary occlusion develops.
Resumo:
PURPOSE - To evaluate diastolic dysfunction (DD) in essential hypertension and the influence of age and cardiac geometry on this parameter. METHODS - Four hundred sixty essential hypertensive patients (HT) underwent Doppler echocardiography to obtain E/A wave ratio (E/A), atrial deceleration time (ADT), and isovolumetric relaxation time (IRT). All patients were grouped according to cardiac geometric patterns (NG - normal geometry; CR - concentric remodeling; CH- concentric hypertrophy; EH - eccentric hypertrophy) and to age (<40; 40 - 60; >60 years). One hundred six normotensives (NT) persons were also evaluated. RESULTS - A worsening of diastolic function in the HT compared with the NT, including HT with NG (E/A: NT - 1.38±0.03 vs HT - 1.27±0.02, p<0.01), was observed. A higher prevalence of DD occurred parallel to age and cardiac geometry also in the prehypertrophic groups (CR). Multiple regression analysis identified age as the most important predictor of DD (r²=0.30, p<0.01). CONCLUSION - DD was prevalent in this hypertensive population, being highly affected by age and less by heart structural parameters. DD is observed in incipient stages of hypertensive heart disease, and thus its early detection may help in the risk stratification of hypertensive patients.
Resumo:
OBJECTIVE - Evaluation of the performance of the QRS voltage-duration product (VDP) for detection of left ventricular hypertrophy (LVH) in spontaneously hypertensive rats (SHR). METHODS - Orthogonal electrocardiograms (ECG) were recorded in male SHR at the age of 12 and 20 weeks, when systolic blood pressure (sBP) reached the average values of 165±3 mmHg and 195±12 mmHg, respectively. Age- and sex- matched normotensive Wistar Kyoto (WKY) rats were used as controls. VDP was calculated as a product of maximum QRS spatial vector magnitude and QRS duration. Left ventricular mass (LVM) was weighed after rats were sacrificed. RESULTS - LVM in SHR at 12 and 20 weeks of age (0.86±0.05 g and 1.05±0.07 g, respectively) was significantly higher as compared with that in WKY (0.65±0.07 g and 0.70±0.02 g). The increase in LVM closely correlated with the sBP increase. VDP did not reflect the increase in LVM in SHR. VDP was lower in SHR as compared with that in WKY, and the difference was significant at the age of 20 weeks (18.2mVms compared with 10.7mVms, p<0.01). On the contrary, a significant increase in the VDP was observed in the control WKY at the age of 20 weeks without changes in LVM. The changes in VDP were influenced mainly by the changes in QRSmax. CONCLUSION - LVM was not the major determinant of QRS voltage changes and consequently of the VDP. These data point to the importance of the nonspatial determinants of the recorded QRS voltage in terms of the solid angle theory.
Resumo:
Background: Echocardiography, though non-invasive and having relatively low-cost, presents issues of variability which can limit its use in epidemiological studies. Objective: To evaluate left ventricular mass reproducibility when assessed at acquisition (online) compared to when assessed at a reading center after electronic transmission (offline) and also when assessed by different readers at the reading center. Methods: Echocardiographers from the 6 ELSA-Brasil study investigation centers measured the left ventricular mass online during the acquisition from 124 studies before transmitting to the reading center, where studies were read according to the study protocol. Half of these studies were blindly read by a second reader in the reading center. Results: From the 124 echocardiograms, 5 (4%) were considered not measurable. Among the remaining 119, 72 (61%) were women, mean age was 50.2 ± 7.0 years and 2 had structural myocardial abnormalities. Images were considered to be optimal/ good by the reading center for 110 (92.4%) cases. No significant difference existed between online and offline measurements (1,29 g, CI 95% −3.60-6.19), and the intraclass correlation coefficient between them was 0.79 (CI 95% 0.71-0.85). For images read by two readers, the intraclass correlation coefficient was 0.86 (CI 95% 0.78-0.91). Conclusion: There were no significant drifts between online and offline left ventricular mass measurements, and reproducibility was similar to that described in previous studies. Central quantitative assessment of echocardiographic studies in reading centers, as performed in the ELSA-Brasil study, is feasible and useful in clinical and epidemiological studies performed in our setting.
Resumo:
The present study describes an auxiliary tool in the diagnosis of left ventricular (LV) segmental wall motion (WM) abnormalities based on color-coded echocardiographic WM images. An artificial neural network (ANN) was developed and validated for grading LV segmental WM using data from color kinesis (CK) images, a technique developed to display the timing and magnitude of global and regional WM in real time. We evaluated 21 normal subjects and 20 patients with LVWM abnormalities revealed by two-dimensional echocardiography. CK images were obtained in two sets of viewing planes. A method was developed to analyze CK images, providing quantitation of fractional area change in each of the 16 LV segments. Two experienced observers analyzed LVWM from two-dimensional images and scored them as: 1) normal, 2) mild hypokinesia, 3) moderate hypokinesia, 4) severe hypokinesia, 5) akinesia, and 6) dyskinesia. Based on expert analysis of 10 normal subjects and 10 patients, we trained a multilayer perceptron ANN using a back-propagation algorithm to provide automated grading of LVWM, and this ANN was then tested in the remaining subjects. Excellent concordance between expert and ANN analysis was shown by ROC curve analysis, with measured area under the curve of 0.975. An excellent correlation was also obtained for global LV segmental WM index by expert and ANN analysis (R² = 0.99). In conclusion, ANN showed high accuracy for automated semi-quantitative grading of WM based on CK images. This technique can be an important aid, improving diagnostic accuracy and reducing inter-observer variability in scoring segmental LVWM.
Resumo:
In cardiomyocytes, calcium (Ca2+) release units comprise clusters of intracellular Ca2+ release channels located on the sarcoplasmic reticulum, and hypertension is well established as a cause of defects in calcium release unit function. Our objective was to determine whether endurance exercise training could attenuate the deleterious effects of hypertension on calcium release unit components and Ca2+ sparks in left ventricular myocytes of spontaneously hypertensive rats. Male Wistar and spontaneously hypertensive rats (4 months of age) were divided into 4 groups: normotensive (NC) and hypertensive control (HC), and normotensive (NT) and hypertensive trained (HT) animals (7 rats per group). NC and HC rats were submitted to a low-intensity treadmill running protocol (5 days/week, 1 h/day, 0% grade, and 50-60% of maximal running speed) for 8 weeks. Gene expression of the ryanodine receptor type 2 (RyR2) and FK506 binding protein (FKBP12.6) increased (270%) and decreased (88%), respectively, in HC compared to NC rats. Endurance exercise training reversed these changes by reducing RyR2 (230%) and normalizing FKBP12.6 gene expression (112%). Hypertension also increased the frequency of Ca2+ sparks (HC=7.61±0.26 vs NC=4.79±0.19 per 100 µm/s) and decreased its amplitude (HC=0.260±0.08 vs NC=0.324±0.10 ΔF/F0), full width at half-maximum amplitude (HC=1.05±0.08 vs NC=1.26±0.01 µm), total duration (HC=11.51±0.12 vs NC=14.97±0.24 ms), time to peak (HC=4.84±0.06 vs NC=6.31±0.14 ms), and time constant of decay (HC=8.68±0.12 vs NC=10.21±0.22 ms). These changes were partially reversed in HT rats (frequency of Ca2+ sparks=6.26±0.19 µm/s, amplitude=0.282±0.10 ΔF/F0, full width at half-maximum amplitude=1.14±0.01 µm, total duration=13.34±0.17 ms, time to peak=5.43±0.08 ms, and time constant of decay=9.43±0.15 ms). Endurance exercise training attenuated the deleterious effects of hypertension on calcium release units of left ventricular myocytes.
Resumo:
This is a report of a nine-year-old boy with both mitral stenosis and regurgitation and extensive endomyocardial fibrosis of the left ventricle. Focus is given to the singularity of the fibrotic process, with an emphasis on the etiopathogenic aspects.
Resumo:
PURPOSE: To evaluate left ventricular mass (LVM) index in hypertensive and normotensive obese individuals. METHODS: Using M mode echocardiography, 544 essential hypertensive and 106 normotensive patients were evaluated, and LVM was indexed for body surface area (LVM/BSA) and for height² (LVM/h²). The 2 indexes were then compared in both populations, in subgroups stratified according to body mass index (BMI): <27; 27-30; > or = 30kg/m². RESULTS: The BSA index does not allow identification of significant differences between BMI subgroups. Indexing by height² provides significantly increased values for high BMI subgroups in normotensive and hypertensive populations. CONCLUSION: Left ventricular hypertrophy (LVH) has been underestimated in the obese with the use of LVM/BSA because this index considers obesity as a physiological variable. Indexing by height² allows differences between BMI subgroups to become apparent and seems to be more appropriate for detecting LVH in obese populations.
Resumo:
Left ventricular diastolic dysfunction plays an important role on heart failure progression. In order to obtain additional reference values of left ventricular diastolic parameters and investigate influence of common variables, peak E wave (peak E), peak A wave (peak A), E/A ratio (E/A), E wave deceleration time (EDT) and isovolumic relaxation time (IRVT) were studied in 40 clinically healthy dogs, by pulsed wave Doppler. The following values were obtained: peak E = 0.747 ± 0.117 m/s, peak A = 0.487 ± 0.062 m/s, E/A = 1.533 ± 0.198, EDT = 88.7 ± 9.2 ms and IRVT = 0.080 ± 0.009 s. Some parameters were influenced by heart rate (peak E, peak A and IRVT), by age (peak A and E/A) and by body weight (TRIV). Gender influence was absent. Values obtained can be used as reference for canine specimens but its interpretation should consider on the influence of related variables.
Resumo:
Cardiopulmonary reflexes are activated via changes in cardiac filling pressure (volume-sensitive reflex) and chemical stimulation (chemosensitive reflex). The sensitivity of the cardiopulmonary reflexes to these stimuli is impaired in the spontaneously hypertensive rat (SHR) and other models of hypertension and is thought to be associated with cardiac hypertrophy. The present study investigated whether the sensitivity of the cardiopulmonary reflexes in SHR is restored when cardiac hypertrophy and hypertension are reduced by enalapril treatment. Untreated SHR and WKY rats were fed a normal diet. Another groups of rats were treated with enalapril (10 mg kg-1 day-1, mixed in the diet; SHRE or WKYE) for one month. After treatment, the volume-sensitive reflex was evaluated in each group by determining the decrease in magnitude of the efferent renal sympathetic nerve activity (RSNA) produced by acute isotonic saline volume expansion. Chemoreflex sensitivity was evaluated by examining the bradycardia response elicited by phenyldiguanide administration. Cardiac hypertrophy was determined from the left ventricular/body weight (LV/BW) ratio. Volume expansion produced an attenuated renal sympathoinhibitory response in SHR as compared to WKY rats. As compared to the levels observed in normotensive WKY rats, however, enalapril treatment restored the volume expansion-induced decrease in RSNA in SHRE. SHR with established hypertension had a higher LV/BW ratio (45%) as compared to normotensive WKY rats. With enalapril treatment, the LV/BW ratio was reduced to 19% in SHRE. Finally, the reflex-induced bradycardia response produced by phenyldiguanide was significantly attenuated in SHR compared to WKY rats. Unlike the effects on the volume reflex, the sensitivity of the cardiac chemosensitive reflex to phenyldiguanide was not restored by enalapril treatment in SHRE. Taken together, these results indicate that the impairment of the volume-sensitive, but not the chemosensitive, reflex can be restored by treatment of SHR with enalapril. It is possible that by augmenting the gain of the volume-sensitive reflex control of RSNA, enalapril contributed to the reversal of cardiac hypertrophy and normalization of arterial blood pressure in SHR.
Resumo:
OBJECTIVE: To identiy left ventricular geometric patterns in hypertensive patients on echocardiography, and to correlate those patterns with casual blood pressure measurements and with the parameters obtained on a 24-hour ambulatory blood pressure monitoring. METHODS: We studied sixty hypertensive patients, grouped according to the Joint National Committee stages of hypertension.. Using the single- and two-dimensional Doppler Echocardiography, we analyzed the left ventricular mass and the geometric patterns through the correlation of left ventricular mass index and relative wall thickness. On ambulatory blood pressure monitoring we assessed the means and pressure loads in the different geometric patterns detected on echocardiography RESULTS: We identified three left ventricular geometric patterns: 1) concentric hypertrophy, in 25% of the patients; 2) concentric remodeling, in 25%; and 3) normal geometry, in 50%. Casual systolic blood pressure was higher in the group with concentric hypertrophy than in the other groups (p=0.001). Mean systolic pressure in the 24h, daytime and nighttime periods was also higher in patients with concentric hypertrophy, as compared to the other groups (p=0.003, p=0.004 and p=0.007). Daytime systolic load and nighttime diastolic load were higher in patients with concentric hypertrophy ( p=0.004 and p=0.01, respectively). CONCLUSIONS: Left ventricular geometric patterns show significant correlation with casual systolic blood pressure, and with means and pressure loads on ambulatory blood pressure monitoring.
Resumo:
OBJECTIVE: To determine the value of the radiological study of the thorax for diagnosing left ventricular dilation and left ventricular systolic dysfunction in patients with Chagas' disease. METHODS: A cross-sectional study of 166 consecutive patients with Chagas' disease and no other associated diseases. The patients underwent cardiac assessment with chest radiography and Doppler echocardiography. Sensitivity, specificity, and positive and negative predictive values of chest radiography were calculated to detect left ventricular dysfunction and the accuracy of the cardiothoracic ratio in the diagnosis of left ventricular dysfunction with the area below the ROC curve. The cardiothoracic ratio was correlated with the left ventricular ejection fraction and the left ventricular diastolic diameter. RESULTS: The abnormal chest radiogram had a sensitivity of 50%, specificity of 80.5%, and positive and negative predictive values of 51.2% and 79.8%, respectively, in the diagnosis of left ventricular dysfunction. The cardiothoracic ratio showed a weak correlation with left ventricular ejection fraction (r=-0.23) and left ventricular diastolic diameter (r=0.30). The area calculated under the ROC curve was 0.734. CONCLUSION: The radiological study of the thorax is not an accurate indicator of left ventricular dysfunction; its use as a screening method to initially approach the patient with Chagas' disease should be reevaluated.