5 resultados para ascospores
em Scielo Saúde Pública - SP
Resumo:
This study highlighted the effect of planting coast-cross grass and forage peanut cv. Amarilis between rows of Natal oranges on spreading of Guignardia citricarpa ascospores and consequent citrus black spot control. Treatments evaluated were: 1- conventional cultivation, free of fungicides; 2- conventional cultivation, using protective fungicides; 3- inter-crop cultivation of coast-cross grass between rows of citrus crops and; 4- inter-cropping cultivation of forage peanut between the rows of citrus crops. Quest Volumetric Spore SystemTM traps were set in order to determine the number of ascospores released. A total of 33 inspections were conducted weekly, from the end of August until early September the following year. A diagrammatic scale was used to determine the severity of the disease as well as the percentage of fruits having a commercial standard. The coast-cross grass was more effective in reducing the number of ascospores produced, whose average statistics were lower than in the conventional treatments, free-fungicides. The inter-crop and conventional cultivation method coupled with fungicide treatment was more effective in reducing the severity of citrus black spot symptoms, and differs statistically from the fungicide-free control method. These methods also resulted in a higher percentage of fruits of a commercial standard, ranging from the 89% through the 91% percentile, and the cultivation, free of fungicides, fell within the 73%.
Resumo:
The black spot of citrus (Citrus sp.) is caused by Guignardia citricarpa with ascospore production depending on temperature, leaf wetness, and rainfall. The number of ascospores produced was monitored using a spore trap and climatic factors were recorded using an automated meteorological station of 'Natal' and 'Valencia' sweet orange (Citrus sinensis) orchards in Mogi Guaçu in the state of São Paulo, Brazil, from November 2000 to March 2001. The fruits were bagged to prevent infection and the bags removed from different sets of fruit for one week during each of the 18 weeks of the season in both orchards. Ascospores were produced during the entire experimental period, from spring through summer, primarily after rain events. In both orchards, ascospore production reached a peak in January and February. Ascospore production was related to leaf wetness only in the Natal orange orchard but was not related to total rainfall or temperature in either orchard. Disease was most severe on fruit exposed the 7th, 8th, and 13th weeks after beginning the experiment in both cultivars as well as after the 16th week for 'Natal'. There was a strong relationship between disease severity and total rainfall for both orchards and a weak correlation between temperature and severity in the 'Natal' block only. There was no relationship between severity and leaf wetness or ascospore numbers.
Resumo:
Three species of Siphomycetes: Rhizopus arhizus, Rhizopus equinus and Rhizopus nigricans, as well as a Septomycete: Emericella nidulans, have been examined by means of a scanning electron microscope. Among the difjerent Rhizopus, this technique showed differences in the appearance of the sporangia. In Emericella nidulans, scanning microscopy enábled one to ascertain that the "Hull cells" were completely hollow and also demonstrated the ornemented aspect of the ascospores.
Resumo:
The importance of the presence of symptomatic fruits with citrus black symptoms (CBS) on the disease severity level in subsequent crop production was assessed in an orchard planted with Valência and Natal sweet orange varieties. Additionally, the period of susceptibility of the fruits of these varieties was evaluated. Fruits were covered with paper bags at the stage of 75% fallen petals and were then exposed to natural infection at weekly intervals, from October 2000 to April 2001. This process was carried out in plants where the fruits from the previous harvest had been picked as well as in plants where fruits remained until natural drop. The evaluation of disease severity used a scale that varied from 0 (absence of symptoms) to 6 (severe symptoms). It was observed that, for the Valência and Natal varieties, conidia of Phyllosticta citricarpa that had formed on the lesions of fruits from the previous harvest did not significantly increase the severity of disease on the fruits of the subsequent harvest period. In this study, the protection of the fruits until 10 weeks after petal drop did not affect the number of lesions, indicating that ascospore discharges after that date were, probably, responsible for disease severity. Fruits exposed between the 20th and 24th week after 75% of the petals had fallen were symptomatic, indicating that, at this stage, the fruits were still susceptible to the pathogen.
Resumo:
A new species of Ophiodothella, O. annonae (Phyllachoraceae, Ascomycetes) is described and illustrated. The fungus causes brown lesions on leaves of Annonae squamosa, which can fall off prematurely, and is characterized by fusiform, slightly curved, biguttulate ascospores with a conspicuous central concentration of cytoplasm. This is the first species of Ophiodotella found on leaves of Annonaceae in Brazil.