68 resultados para aliphatic amines
em Scielo Saúde Pública - SP
Resumo:
Indole-based receptors such as biindole, carbazole, and indolocarbazole are regarded as some of the most favorable anion receptors in molecular recognition. This is because indole groups possess N–H groups as hydrogen-bonding donors. The introduction of amide groups in the indole framework can induce strong binding properties and good water solubility. In this study, we designed and synthesized a series of N-(indol-3-ylglyoxylyl)benzylamine derivatives as novel and simple anion receptors. The receptors derived by aryl and aliphatic amines can selectively recognize F– based on a color change from colorless-to-yellow in DMSO. The receptors derived by hydrazine hydrate can recognize F–, AcO–, and H2PO4– by similar color changes in DMSO and can even enable the selective recognition of F– in a DMSO–H2O binary solution by the naked eye. Spectrographic data indicate that complexes are formed between receptors and anions through multiple hydrogen-bonding interactions in dual solutions.
Resumo:
New alternative insecticides are necessary for the chemical control of head lice. In this study the fumigant knockdown time 50% (KT50) and repellency index (RI) of three aliphatic lactones was compared with two essential oils and DDVP, against permethrin-resistance Pediculus humanus capitis from Argentina. In the fumigant assay, none of the lactones were effective compared to the highest activity of eucalyptus (KT50 15.53 m). In the repellency test, the three lactones were equally or more effective (RI ranging from 60.50 to 76.68) than the positive control (piperonal). These lactones are promising as head lice repellents.
Resumo:
This review is about the aliphatic, alicyclic and aromatic compounds (non-heterocyclic compounds) that are present in the volatile fractions of roasted coffees. Herein, the contents, aroma precursors and the sensorial properties of volatile phenols, aldehydes, ketones, alcohols, ethers, hydrocarbons, carboxylic acids, anhydrides, esters, lactones, amines and sulphur compounds are discussed. Special attention is given to the compounds of these groups that are actually important to the final aroma of roasted coffees.
Resumo:
An aliphatic-aromatic copolyester of poly(ethylene terephthalate), PET, and poly(ethylene adipate), PEA, PET-co-PEA, was synthesized by the high temperature melt reaction of post-consumer PET and PEA. As observed by NMR spectroscopy, the reaction yielded random copolyesters in a few minutes through ester-interchange reactions, even without added catalyst. The copolyesters obtained in the presence of a catalyst presented higher intrinsic viscosity than that obtained without the addition of catalyst, due to simultaneous polycondensation and ester-interchange reactions. The structure of the aliphatic-aromatic copolyesters obtained in different PET/PEA ratio is random as observed by NMR analysis.
Resumo:
Fluid management and dosage regimens of drugs in preterm infants should be based on the glomerular filtration rate. The current methods to determine glomerular flitration rate are invasive, time-consuming, and expensive. In contrast, creatinine clearance can be easy obtained and quickly determined. The purpose of this study was to compare plasma creatinine on the third and seventh day of life in preterm newborn infants, to evaluate the influence of maternal creatinine, and to demonstrate creatinine clearance can be used as a reliable indicator of glomerular filtration rate. We developed a prospective study (1994) including 40 preterm newborns (gestational age < 37 weeks), average = 34 weeks; birth weight (average) = 1840 g, in the first week of life. Inclusion criteria consisted of: absence of renal and urinary tract anomalies; O2 saturation 3 92%; adequate urine output (>1ml/kg/hr); normal blood pressure; absence of infections and no sympathomimetic amines in use. A blood sample was collected to determine plasma creatinine (enzymatic method) on the third and seventh day of life and creatinine clearance (CrCl) was obtained using the following equation: , k = 0.33 in preterm infant All plasma creatinine determinations showed normal values [third day: 0.78 mg/dl ± 0.24 (mean ± SD)and seventh day: 0.67 mg/dl ± 0.31 - (p>0.05)]. Also all creatinine clearance at third and seventh day of life were normal [third day: 19.5 ml/min ± 5.2 (mean ± SD) and seventh day: 23.8 ml/min ± 7.3 - (p>0,05)]. All preterm infants developed adequate renal function for their respective gestational age. In summary, our results indicate that, for clinical practice, the creatinine clearance, using newborn length, can be used to estimate glomerular filtration rate in preterm newborn infants.
Resumo:
Ammonium salt derivatives of natural allylphenols were synthesized with the purpose of obtaining potential peripheral analgesics. These drugs, by virtue of their physicochemical properties, would not be able to cross the blood brain barrier. Their inability to enter into the central nervous system (CNS) should prevent several adverse effects observed with classical opiate analgesics (Ferreira et al., 1984). Eugenol (1) O-methyleugenol (5) and safrole (9) were submitted to nitration, reduction and permethylation, leading to the ammonium salts 4, 8 and 12. Another strategy applied to eugenol (1), consisting in its conversion to a glycidic ether (13), opening the epoxide ring with secondary amines and methylation, led to the ammonium salts 16 and 17. All these ammonium salts showed significant peripheral analgesic action, in modified version of the Randall-Sellito test (Ferreira et al. 1978), at non-lethal doses. The ammonium salt 8 showed an activity comparable to that of methylnalorphinium, the prototype of an ideal peripheral analgesic (Ferreira et al., 1984).
Resumo:
The antimicrobial activity of three different extracts (hexanic, ethyl acetate, methanol) obtained from Brazilian Drosera species (D. communis, D. montana var. montana, D. brevifolia, D. villosa var. graomogolensis, D. villosa var. villosa, Drosera sp. 1, and Drosera sp. 2 ) were tested against Staphylococcus aureus (ATCC 25923), Enterococcus faecium (ATCC23212), Pseudomonas aeruginosa (ATCC27853), Escherichia coli (ATCC11229), Salmonella choleraesuis (ATCC10708), Klebsiella pneumoniae (ATCC13883), and Candida albicans (a human isolate). Better antimicrobial activity was observed with D. communis and D. montana var. montana ethyl acetate extracts. Phytochemical analyses from D. communis, D. montana var. montana and D. brevifolia yielded 5-hydroxy-2-methyl-1,4-naphthoquinone (plumbagin); long chain aliphatic hydrocarbons were isolated from D. communis and from D. villosa var. villosa, a mixture of long chain aliphatic alcohols and carboxylic acids, was isolated from D. communis and 3b-O-acetylaleuritolic acid from D. villosa var. villosa.
Resumo:
Soil organic matter from the surface horizon of two Brazilian soils (a Latosol and a Chernosol), in bulk samples (in situ SOM) and in HF-treated samples (SOM), was characterized by elemental analyses, diffuse reflectance (DRIFT) and transmission Fourier transform infrared spectroscopy (T-FTIR). Humic acids (HA), fulvic acids (FA) and humin (HU) isolated from the SOM were characterized additionally by ultraviolet-visible spectroscopy (UV-VIS). After sample oxidation and alkaline treatment, the DRIFT technique proved to be more informative for the detection of "in situ SOM" and of residual organic matter than T-FTIR. The higher hydrophobicity index (HI) and H/C ratio obtained in the Chernosol samples indicate a stronger aliphatic character of the organic matter in this soil than the Latosol. In the latter, a pronounced HI decrease was observed after the removal of humic substances (HS). The weaker aliphatic character, the higher O/C ratio, and the T-FTIR spectrum obtained for the HU fraction in the Latosol suggest the occurrence of surface coordination of carboxylate ions. The Chernosol HU fraction was also oxygenated to a relatively high extent, but presented a stronger hydrophobic character in comparison with the Latosol HU. These differences in the chemical and functional group composition suggest a higher organic matter protection in the Latosol. After the HF treatment, decreases in the FA proportion and the A350/A550 ratio were observed. A possible loss of FA and condensation of organic molecules due to the highly acid medium should not be neglected.
Resumo:
Humic substances are the major components of soil organic matter. Among the three humic substance components (humic acid, fulvic acid, and humin), humin is the most insoluble in aqueous solution at any pH value and, in turn, the least understood. Humin has poor solubility mainly because it is tightly bonded to inorganic soil colloids. By breaking the linkage between humin and inorganic soil colloids using inorganic or organic solvents, bulk humin can be partially soluble in alkali, enabling a better understanding of the structure and properties of humin. However, the structural relationship between bulk humin and its alkaline-soluble (AS) and alkaline-insoluble (AIS) fractions is still unknown. In this study, we isolated bulk humin from two soils of Northeast China by exhaustive extraction (25 to 28 times) with 0.1 mol L-1 NaOH + 0.1 mol L-1 Na4P2O7, followed by the traditional treatment with 10 % HF-HCl. The isolated bulk humin was then fractionated into AS-humin and AIS-humin by exhaustive extraction (12 to 15 times) with 0.1 mol L-1 NaOH. Elemental analysis and solid-state 13C cross-polarization magic angle spinning nuclear magnetic resonance (13C CPMAS NMR) spectroscopy were used to characterize and compare the chemical structures of bulk humin and its corresponding fractions. The results showed that, regardless of soil types, bulk humin was the most aliphatic and most hydrophobic, AS-humin was the least aliphatic, and AIS-humin was the least alkylated among the three humic components. The results showed that bulk humin and its corresponding AS-humin and AIS-humin fractions are structurally differed from one another, implying that the functions of these humic components in the soil environment differed.
Resumo:
After open coal mining, soils are “constructed”, which usually contain low levels and quality of organic matter (OM). Therefore, the use of plant species for revegetation and reclamation of degraded areas is essential. This study evaluated the distribution of carbon (C) in the chemical fractions as well as the chemical characteristics and humification degree of OM in a soil constructed after coal mining under cultivation of perennial grasses. The experiment was established in 2003 with the following treatments: Hemarthria altissima (T1), Paspalum notatum (T2), Cynodon dactilon (T3), Urochloa brizantha (T4), bare constructed soil (T5), and natural soil (T6). In 2009, soil samples were collected from the 0.00-0.03 m layer and the total organic carbon stock (TOC) and C stock in the chemical fractions: acid extract (CHCl), fulvic acid (CFA), humic acid (CHA), and humin (CHU) were determined. The humic acid (HA) fraction was characterized by infrared spectroscopy and the laser-induced fluorescence index (ILIF) of OM was also calculated. After six years, differences were only observed in the CHA stocks, which were highest in T1 (0.89 Mg ha-1) and T4 (1.06 Mg ha-1). The infrared spectra of HA in T1, T2 and T4 were similar to T6, with greater contribution of aliphatic organic compounds than in the other treatments. In this way, ILIF decreased in the sequence T5>T3>T4>T1>T2>T6, indicating higher OM humification in T3 and T5 and more labile OM in the other treatments. Consequently, the potential of OM quality recovery in the constructed soil was greatest in treatments T1 and T4.
Resumo:
The objective of this work was to characterize the morphology and molecular composition of the hydrochar produced by microwave-assisted hydrothermal carbonization of cellulose. The produced hydrochar consists mainly of aggregate microspheres with about 2.0 µm in diameter, with aliphatic and aromatic structures and the presence of carbonyl functional groups. The aromatic groups are formed mainly by benzofuran-like structures, being chemically different from common cellulose char. Microwave-assisted hydrothermal carbonization yields a functionalized carbon-rich material similar to that produced by the conventional hydrothermal process.
Resumo:
The objective of this work was to evaluate the influence of different combinations of grape cultivars and rootstocks on chemical characteristics of grape juices. Six treatments were evaluated, consisting of combinations between the Isabel Precoce and BRS Cora grape cultivars and the 'IAC 766', 'IAC 313', and 'IAC 572' rootstocks. Approximately 10 L of juice were obtained per treatment. Analyses of color, total soluble solids content, pH, anthocyanins, total phenolics, total sugars, and quantification and identification of biogenic amines by HPLC were performed. Biogenic amines, such as putrescine, cadaverine, spermidine, and spermine, were found in all evaluated cultivars. By principal component analysis (PCA), treatments can be divided into two groups, according to the cultivar. Juices obtained from 'Isabel Precoce' are characterized by higher levels of total sugar content and soluble solids; however, juices from 'BRS Cora' are positively correlated with phenolic content, anthocyanins, and color and acidity parameters. The differences found by PCA for juices from the Isabel Precoce and BRS Cora cultivars indicate that, regardless of the rootstock used, the most important factor in the chemical characterization of juices is the grape cultivar.
Resumo:
The hydroformylation reaction represents one of the most important C1-chemistry area in the chemical industry. This catalytic process, which has been developed up to now mainly to the production of commodities chemicals, has shown a remarkable potential for the preparation of several categories of specialty chemicals and in particular pharmaceutical compounds. Arylpropanoic acids, various amines containing aryl groups, and intermediates for the preparation of vitamins, carbocyclic and heterocyclic compounds and many other classes of organic molecules endowed with pharmacological activity are currently accessible in good-to-high yields through hydroformylation of selected olefinic substrates. The asymmetric hydroformylation is going to reach the stage of maturity and hence to contribute in solving many troublesome synthetic problems connected with the preparation of pharmacologically active compounds with very high enantiomeric purity. The present survey emphasizes the usefulness of synthesis gas as a starting material in fine chemistry, which is expected to be important for industry.
Resumo:
The initiation step of the light-induced polymerization kinetics of vinyl monomers using dye-sensitized photoinitiators to generate active radicals is discussed. The photoredox processes of basic dyes with amines and sulfinates are described as photochemical systems capable of starting free-radical polymerization of vinyl monomers in homogeneous and microheterogeneous media. Photophysical techniques like laser flash photolysis and time-correlated single photon counting are used to investigate the excited-state kinetics of the dyes.