43 resultados para agricultural aviation
em Scielo Saúde Pública - SP
Resumo:
The soybean rust caused by Phakopsora pachyrhizi is considered the main soybean disease and consequently the appropriate selection and the use of spraying equipment are vital for its control. The aim of this study was to evaluate the performance of aerial application equipment for soybean rust control. It was used: Micronair AU 5000 at 10 L ha-1 (with oil) and at 20 L ha-1 (without oil); Stol ARD atomizer at 10 and 20 L ha-1 (both with oil) and Spectrum (electrostatic) at 10 L ha-1 (without oil). The adjuvant was cotton oil (1.0 L ha-1) with emulsifier (BR 455) at 0.025 L ha-1. The field trial was set up at the 3rd fungicide application, when f four replications of each treatment. There were no statistical differences among treatments related to fungicide deposits by at a Confidence Interval of 95%. It was observed that the best results were obtained with Micronair (10 L ha-1 with oil), Stol (20 L ha-1 with oil) and electrostatic system at 10 L ha-1 with the lowest relative humidity (64%).
Resumo:
The objective of the present study was to analyze the influence of spray mixture volume and flight height on herbicide deposition in aerial applications on pastures. The experimental plots were arranged in a pasture area in the district of Porto Esperidião (Mato Grosso, Brazil). In all of the treatments, the applications contained the herbicides aminopyralid and fluroxypyr (Dominum) at the dose of 2.5 L c.p. ha-1, including the adjuvant mineral oil (Joint Oil) at the dose of 1.0 L and a tracer to determine the deposition by high-performance liquid chromatography (HPLC) (rhodamine at a concentration of 0.6%). The experiment consisted of nine treatments that comprised the combinations of three spray volumes (20, 30 and 50 L ha-1) and three flight heights (10, 30 and 40 m). The results showed that, on average, there was a tendency for larger deposits for the smallest flight heights, with a significant difference between the heights of 10 and 40 m. There was no significant difference among the deposits obtained with the different spray mixture volumes.
Resumo:
The European Union's (EU) decision to include aviation into the Emissions Trade Scheme was heatedly contested. Countries around the world, but mainly the Brazil, Russia, India, China and South Africa group (BRICS) and the US, denounced the EU's initiate as illegal and unilateral. Following a decade of frustrated negotiations at the International Civil Aviation Organization (ICAO), this paper interrogates why such measure, in principle climate-friendly, inspired so much global resentment. I argue that concerns with competitiveness and risks of legal inconsistency are important, but insufficient elements to explain the core of the conflict. The paper suggests that the EU was strongly criticized because third countries perceived this action as an imposed solution, which fostered an environment of distrust. Therefore, I claim that the problem has more to do with a normative divide than with a substantive divergence on what should be done regarding aviation emissions. My analysis is informed by the present literature on the links between trade and climate change, but gives particular weight to first-hand information through interviews with key stakeholders. The paper is divided in three parts. First, it presents the scope of the EU directive in historical perspective. Second, it explores the EU's measure through three different angles: legal, economical and political. The final part explores some possible solutions to overcome these divergences.
Resumo:
This text focuses on the major drivers of Brazilian agricultural cooperation in Africa as conceived and pursued from 2004 to 2014, with emphasis on the impacts of political and economic international changes that took place in that period, and particularly the impacts of the 2008 economic crisis, in framing Brazil's foreign policy and development assistance initiatives. It addresses current international forces and developments at the systemic level, but also analyses recent economic domestic developments, in particular those directly related to Brazilian agriculture and those related to the policy framework of its evolving internationalization. Special attention is paid to the dual dimensions of Brazilian agricultural policy and to its projection in agricultural cooperation as pursed in Africa.
Resumo:
A review is presented of the interrelationships between arthropod vectors, the diseases they transmit and agricultural development. Particular attention is given to the effects of deforestation, livestock development and irrigation on the abundance of vectors and changing patterns of diseases such as malaria, trypanosomiases, leishmaniasis, Chagas' and some arboviral infections. The question as whether keeping livestock diverts biting away from people and reduces diseases such as malaria - that is zooprophylaxis, or whether the presence of cattle actually increases biting populations is discussed.
Resumo:
As a rule, soils of the subtropical and tropical regions, in which rainfall is not limiting, are acidic, and low in phosphorus, and, to a less extent, in other macro and micronutrients as well, such a sulfur, boron and zinc. The establishment of a permanent agricultural prac. tice therefore, demands relatively high usage of liming and phosphatic fertilization, to begin with. Several approaches, not mutually exclusive, could be used in order to increase the efficiency of utilization of soil and fertilizer phosphorus so that, goal of diminishing costs of production is reached. The use of liming materials bringing up pH to 6.0-6.5 causes the conversion of iron and aluminum phosphates to more available calcium phosphates; on the other hand, by raising calcium saturation in the exchange complex, it improves the development and operation if the root system which allows c or a higher utilization of all soil nutrients, including phosphorus, and helps of stand water deficits which may occur. The role of mycorrhizal fungi should be considered as a way of increasing soil and fertilizer P utilization, as well as the limitations thereof. Screening of and breeding for varieties with higher efficiency of uptake and utilization of soil and fertilizer phosphorus leads to a reduction in cost of inputs and to higher benefit/cost ratios. Corrective fertilization using ground rock phosphate helps to saturate the fixation power of the soil thereby reducing, as a consequence, the need for phosphorus in the maintenance fertilization. Maintenance fertilization, in which soluble phos-phatic sources are used, could be improved by several means whose performance has been proved: limimg, granula tion, placement, use of magnesium salts. Last, cost of phosphate fertilization could be further reduced, without impairing yields, through impairing yields, through changes in technology designed to obtain products better adapted to local conditions and to the availability or raw materials and energy sources.
Resumo:
The composition and diversity of bees in an agricultural area in Rio Claro, state of São Paulo, Brazil, were studied from May 2003 to June 2004, using Moericke traps. The collection site, an area with 58.08 hectares, is characterized by grain production and direct planting, with 70% of the surrounding area planted with sugar cane. During the study, 456 bees were collected, distributed among 20 genera, pertaining to the families Andrenidae (4.8%), Apidae (40.8%) and Halictidae (54.4%). Specimens of genera Dialictus (38%) and Diadasia (30%) predominated in this area. The species diversity, assessed using the Shannon and Simpson indices, were H=1.88 and 1/ D= 4.15, respectively, and the Evenness index was 0.61.
Resumo:
The behavior of glyphosate in a Rhodic Oxisol, collected from fields under no-till and conventional management systems in Ponta Grossa, Parana state (Brazil) was investigated. Both agricultural systems had been in production for 23 years. Glyphosate mineralization, soil-bound forms, sorption and desorption kinetics, sorption/desorption batch experiments, and soil glyphosate phythoavailability (to Panicum maximum) were determined. The mineralization experiment was set up in a completely randomized design with a 2 x 2 factorial scheme (two management systems and two 14C radiolabelled positions in the glyphosate), with five replicates. 14CO2 evolution was measured in 7-day intervals during 63 days. The glyphosate sorption kinetics was investigated in a batch experiment, employing a glyphosate concentration of 0.84 mg L-1. The equilibration solution was 0.01 mol L-1 CaCl2 and the equilibration times were 0, 10, 30, 60, 120, 240, and 360 min. Sorption/desorption of glyphosate was also investigated using equilibrium batch experiments. Five different concentrations of the herbicide were used for sorption (0.42, 0.84, 1.68, 3.36, and 6.72 mg L-1) and one concentration for desorption. Glyphosate phytoavailability was analyzed in a 2 x 5 factorial scheme with two management systems and five glyphosate concentrations added to soil (0, 4.2, 8.4, 42.0, and 210.0 µg g-1) in a completely randomized design. Phytotoxicity symptoms in P. maximum were evaluated for different periods. The soil under both management systems showed high glyphosate sorption, which impeded its desorption and impaired the mineralization in the soil solution. Practically the total amount of the applied glyphosate was quickly sorbed (over 90 % sorbed within 10 min). Glyphosate bound to residues did not have adverse effects on P. maximum growth. The mineralization of glyphosate was faster under no-till and aminomethylphosphonic acid was the main glyphosate metabolite.
Resumo:
The industrial refining of kaolin involves the removal of iron oxides and hydroxides along with other impurities that cause discoloration of the final product and depreciate its commercial value, particularly undesirable if destined to the paper industry. The chemical leaching in the industrial processing requires treatments with sodium hyposulfite, metallic zinc, or sulfuric and phosphoric acids, in order to reduce, dissolve and remove ferruginous compounds. To mitigate the environmental impact, the acidic effluent from the leaching process must be neutralized, usually with calcium oxide. The resulting solid residue contains phosphorous, zinc, and calcium, among other essential nutrients for plant growth, suggesting its use as a macro and micronutrient source. Samples of such a solid industrial residue were used here to evaluate their potential as soil fertilizer in an incubation greenhouse experiment with two soil samples (clayey and medium-textured). The small pH shift generated by applying the residue to the soil was not a limiting factor for its use in agriculture. The evolution of the concentrations of exchangeable calcium, and phosphorous and zinc extractability by Mehlich-1 extractant during the incubation period confirms the potential use of this industrial residue as agricultural fertilizer.
Resumo:
A sustainable management of soils with low natural fertility on family farms in the humid tropics is a great challenge and overcoming it would be an enormous benefit for the environment and the farmers. The objective of this study was to assess the environmental and agronomic benefits of alley cropping, based on the evaluation of C sequestration, soil quality indicators, and corn yields. Combinations of four legumes were used in alley cropping systems in the following treatments: Clitoria fairchildiana + Cajanus cajan; Acacia mangium + Cajanus cajan; Leucaena leucocephala + Cajanus cajan; Clitoria fairchildiana + Leucaena leucocephala; Leucaena leucocephala + Acacia mangium and a control. Corn was used as a cash crop. The C content was determined in the different compartments of soil organic matter, CEC, available P, base saturation, percentage of water saturation, the period of the root hospitality factor below the critical level and corn yield. It was concluded that alley cropping could substitute the slash and burn system in the humid tropics. The main environmental benefit of alley cropping is the maintenance of a dynamic equilibrium between C input and output that could sustain up to 10 Mg ha-1 of C in the litter layer, decreasing atmospheric CO2 levels. Alley cropping is also beneficial from the agricultural point of view, because it increases base saturation and decreases physical resistance to root penetration in the soil layer 0 - 10 cm, which ensures the increase and sustainability of corn yield.
Resumo:
The structural modeling of spatial dependence, using a geostatistical approach, is an indispensable tool to determine parameters that define this structure, applied on interpolation of values at unsampled points by kriging techniques. However, the estimation of parameters can be greatly affected by the presence of atypical observations in sampled data. The purpose of this study was to use diagnostic techniques in Gaussian spatial linear models in geostatistics to evaluate the sensitivity of maximum likelihood and restrict maximum likelihood estimators to small perturbations in these data. For this purpose, studies with simulated and experimental data were conducted. Results with simulated data showed that the diagnostic techniques were efficient to identify the perturbation in data. The results with real data indicated that atypical values among the sampled data may have a strong influence on thematic maps, thus changing the spatial dependence structure. The application of diagnostic techniques should be part of any geostatistical analysis, to ensure a better quality of the information from thematic maps.
Resumo:
Obtaining information about soil properties under different agricultural uses to plan soil management is very important with a view to sustainability in the different agricultural systems. The aim of this study was to evaluate changes in certain indicators of the physical quality of a dystrophic Red Latosol (Oxisol) under different agricultural uses. The study was conducted in an agricultural area located in northern Paraná State. Dystrophic Red Latosol samples were taken from four sites featuring different types of land use typical of the region: pasture of Brachiaria decumbens (P); sugarcane (CN); annual crops under no-tillage (CAPD); and native forest (permanent conservation area) (control (C)). For each land use, 20 completely randomized, disturbed and undisturbed soil samples were collected from the 0-20 cm soil layer, to determine soil texture, volume of water-dispersible clay, soil flocculation (FD), particle density, quantity of organic matter (OM), soil bulk density (Ds), soil macroporosity (Ma) and microporosity (Mi), total soil porosity (TSP), mean geometric diameter of soil aggregates (MGD), and penetration resistance (PR). The results showed differences in OM, FD, MGD, Ds, PR, and Ma between the control (soil under forest) and the areas used for agriculture (P, CN and CAPD). The soils of the lowest physical quality were those used for CN and CAPD, although only the former presented a Ma level very close to that representing unfavorable conditions for plant growth. For the purposes of this study, the physical properties studied were found to perform well as indicators of soil quality.
Resumo:
Water resource quality is a concern of today's society and, as a consequence, low pollutant wastewaters and sludges are being increasingly treated, resulting in continuous production of sewage sludge. Sewage sludge (SS) can be used as soil physical conditioner of agricultural or degraded lands, due to its organic C component. The objective of this research was to evaluate the long-term SS effects on soil physical quality of properties such as bulk density, porosity, permeability and water retention of degraded soils treated with annual SS applications. The SS rates were calculated according to the crop N demand. The field experiment consisted of three treatments: mineral fertilization, 10 and 20 Mg ha-1 of SS (once and twice the SS quantity to meet the maize N demand, respectively), in annual applications to the surface layer of a eutroferric Red Latosol. SS reduced bulk density, increased macroporosity and decreased microporosity after the third application, but did not significantly alter the soil permeability and physical quality as measured by the S index in the surface layer.
Resumo:
To express the negative effects of soil compaction, some researchers use critical values for soil mechanical strength that severely impair plant growth. The aim of this study was to identify this critical compaction depth, to test the functionality of a new, portable penetrometer developed from a spring dynamometer, and compare it to an electronic penetrometer traditionally used in compaction studies of agricultural soils. Three soils with distinct texture were conventionally tilled using a disk plow, and cultivated with different plant species. The critical soil resistance defined to establish critical compaction depth was equal to 1.5 MPa. The results of the new equipment were similar to the electronic penetrometer, indicating its viability as a tool for assessing the soil physical conditions for plant growth.