32 resultados para aerobic reactor
em Scielo Saúde Pública - SP
Resumo:
This paper sought to evaluate the behavior of an upflow Anaerobic-Aerobic Fixed Bed Reactor (AAFBR) in the treatment of cattle slaughterhouse effluent and determine apparent kinetic constants of the organic matter removal. The AAFBR was operated with no recirculation (Phase I) and with 50% of effluent recirculation (Phase II), with θ of 11h and 8h. In terms of pH, bicarbonate alkalinity and volatile acids, the results indicated the reactor ability to maintain favorable conditions for the biological processes involved in the organic matter removal in both operational phases. The average removal efficiencies of organic matter along the reactor height, expressed in terms of raw COD, were 49% and 68% in Phase I and 54% and 86% in Phase II for θ of 11h and 8h, respectively. The results of the filtered COD indicated removal efficiency of 52% and k = 0.0857h-1 to θ of 11h and 42% and k = 0.0880h-1 to θ of 8h in the Phase I. In Phase II, the removal efficiencies were 59% and 51% to θ of 11h and 8h, with k = 0.1238h-1 and k = 0.1075 h-1, respectively. The first order kinetic model showed good adjustment and described adequately the kinetics of organic matter removal for θ of 11h, with r² equal to 0.9734 and 0.9591 to the Phases I and II, respectively.
Resumo:
A sequential batch reactor with suspended biomass and useful volume of 5 L was used in the removal of nutrients and organic matter in workbench scale under optimal conditions obtained by central composite rotational design (CCRD), with cycle time (CT) of 16 h (10.15 h, aerobic phase, and 4.35 h, anoxic phase) and carbon: nitrogen ratio (COD/NO2--N+NO3--N) equal to 6. Complete cycles (20), nitrification followed by denitrification, were evaluated to investigate the kinetic behavior of degradation of organic (COD) and nitrogenated (NH4+-N, NO2--N and NO3--N) matter present in the effluent from a bird slaughterhouse and industrial processing facility, as well as to evaluate the stability of the reactor using Shewhart control charts of individual measures. The results indicate means total inorganic nitrogen (NH4+-N+NO2- -N+NO3--N) removal of 84.32±1.59% and organic matter (COD) of 53.65±8.48% in the complete process (nitrification-denitrification) with the process under statistical control. The nitrifying activity during the aerobic phase estimated from the determination of the kinetic parameters had mean K1 and K2 values of 0.00381±0.00043 min-1 and 0.00381±0.00043 min-1, respectively. The evaluation of the kinetic behavior of the conversion of nitrogen indicated a possible reduction of CT in the anoxic phase, since removals of NO2--N and NO3--N higher than 90% were obtained with only 1 h of denitrification.
Resumo:
In this work it was evaluated the performance of two systems of swine wastewater treatment consisting of two-stage upflow anaerobic sludge blanket (UASB) reactors, with and without post-treatment in sequencing batch reactor (SBR), fed continuously, with aerobic phase. The UASB reactors in the first stage had 908 L in the sets I and II, and in the second stage 350 and 188 L, respectively. In the set II the post-treatment was performed in a SBR of 3,000 L. The hydraulic detention times in the anaerobic treatment systems were 100, 75 and 58 h in the set I; 87, 65 and 51 h in the set II; and 240 and 180 h in the SBR. The volumetric organic load applied in the first stage UASB reactors ranged from 6.9 to 12.6 g total COD (L d)-1 in the set I and 7.5 to 9.8 g total COD (L d)-1 in the set II. The average removal efficiencies of total COD, total phosphorus (Ptotal), and Kjeldahl and organic nitrogen (KN and Norg) in the anaerobic treatment systems were similar and reached maximum values of 97%, 64%, 68%, and 98%. In the SBR, the removal efficiencies of total COD and thermotolerant coliforms were up to 62 and 92% resulting, respectively, in effluent concentrations of 135 mg L-1 and 2x10(4)MPN (100 mL)-1. For Ptotal, total nitrogen (TN) and Norg, the average removal efficiencies in the SBR were up to 58, 25 and 73%, respectively.
Resumo:
This study aimed to evaluate the influence of airflow (0.25, 0.50 and 0.75 L.L-1.min-1) and cycle time (10.45 h, 14.25 h and 17.35 h) on a sequencing batch reactor (SBR) performance in promoting nitrification and denitrification of poultry slaughterhouse wastewater. The operational stages included feeding, aerobic and anoxic reactions, sedimentation and discharge. SBR was operated in a laboratory scale with a working volume of 4 L, keeping 25% of biomass retained inside the reactor as inoculum for the next batch. In the anoxic stage, C: N ratio was maintained between 5 and 6 by adding cassava starch wastewater. A factorial design (22) with five repetitions was designed at the central point to evaluate the influence of cycle time and airflow on total inorganic nitrogen removal (N-NH4++N-NO2-+N-NO3-) and in the whole process (nitrification and denitrification). The highest total inorganic nitrogen removal (93.3%) was observed for airflow of 0.25 L.L-1.min‑1 and a cycle time of 14.25 h. At the end of the experiment, the sludge inside the reactor was characterized by fluorescent in situ hybridization (FISH), indicating the presence of ammonia and nitrite oxidizing bacteria.
Resumo:
The authors studied 58 infants hospitalized for pneumonia in a semi-intensive care unit. Age ranged from 1 complete to 6 incomplete months. The infants were sent from another hospital in 20 cases and from home in a further 38. Pulmonary involvement, which was alveolar in 46 cases and interstitial in 12, was bilateral in 31 children. The investigation was carried out prospectively on the etiological agents associated with respiratory infection to look for evidence of aerobic bacteria (blood cultures), Chlamydia trachomatis and Cytomegalovirus (serology), and Pneumocystis carinii (direct microscopy of tracheal aspirated material). The following infectious agents were diagnosed in 21 children (36.2%): Aerobic bacteria (8), Chlamydia trachomatis (5), Pneumocystis carinii (3), Cytomegalovirus (3), Cytomegalovirus and Chlamydia trachomatis (1), Aerobic bacteria and Cytomegalovirus (1). Seven cases of infection by Chlamydia trachomatis and/or Cytomegalovirus were diagnosed out of the 12 cases with pulmonary interstitial involvement.
Resumo:
ABSTRACTINTRODUCTION: This study aimed to determine the frequencies of bacterial isolates cultured from diabetic foot infections and assess their resistance and susceptibility to commonly used antibiotics.METHODS: This prospective study included 41 patients with diabetic foot lesions. Bacteria were isolated from foot lesions, and their antibiotic susceptibility pattern was determined using the Kirby-Bauer disk diffusion method and/or broth method [minimum inhibitory concentration (MIC)].RESULTS: The most common location of ulceration was the toe (54%), followed by the plantar surface (27%) and dorsal portion (19%). A total of 89 bacterial isolates were obtained from 30 patients. The infections were predominantly due to Gram-positive bacteria and polymicrobial bacteremia. The most commonly isolated Gram-positive bacteria were Staphylococcus aureus, followed by Staphylococcus saprophyticus, Staphylococcus epidermidis, Streptococcus agalactiae, and Streptococcus pneumoniae. The most commonly isolated Gram-negative bacteria were Proteus spp. and Enterobacterspp., followed by Escherichia coli, Pseudomonasspp., and Citrobacterspp. Nine cases of methicillin-resistant Staphylococcus aureus (MRSA) had cefoxitin resistance, and among these MRSA isolates, 3 were resistant to vancomycin with the MIC technique. The antibiotic imipenem was the most effective against both Gram-positive and Gram-negative bacteria, and gentamicin was effective against Gram-negative bacteria.CONCLUSIONS: The present study confirmed the high prevalence of multidrug-resistant pathogens in diabetic foot ulcers. It is necessary to evaluate the different microorganisms infecting the wound and to know the antibiotic susceptibility patterns of the isolates from the infected wound. This knowledge is crucial for planning treatment with the appropriate antibiotics, reducing resistance patterns, and minimizing healthcare costs.
Resumo:
PURPOSE: Aerobic capacity and respiratory function may be compromised in obesity, but few studies have been done in highly obese bariatric candidates. In a prospective study, these variables were documented in the preoperative period, aiming to define possible physiologic limitations in a apparently healthy and asymptomatic population. METHOD: Forty-six consecutively enrolled adults (age 39.6 ± 8.4 years, 87.0% females, body mass index /BMI 49.6 ± 6.3 kg/m² ) were analyzed. Ventilatory variables were investigated by automated spirometry, aerobic capacity was estimated by a modified Bruce test in an ergometric treadmill, and body composition was determined by bioimpedance analysis. RESULTS: Total fat was greatly increased (46.4 ± 4.6% of body weight) and body water reduced (47.3 ± 4.6 % body weight), as expected for such obese group. Spirometric findings including forced vital capacity of 3.3 ± 0.8 L and forced expiratory volume-1 second of 2.6 ± 0.6 L were usually acceptable for age and gender, but mild restrictive pulmonary insufficiency was diagnosed in 20.9%. Aerobic capacity was more markedly diminished, as reflected by very modest maximal time (4.5 ± 1.1 min) and distance (322 ±142 m) along with proportionally elevated maximal oxygen consumption (23.4 ± 9.5 mL/kg/min) achieved by these subjects during test exercise. CONCLUSIONS: 1) Cardiopulmonary evaluation was feasible and well-tolerated in this severely obese population; 2) Mean spirometric variables were not diminished in this study, but part of the population displayed mild restrictive changes; 3) Exercise tolerance was very negatively influenced by obesity, resulting in reduced endurance and excessive metabolic cost for the treadmill run; 4) More attention to fitness and aerobic capacity is recommended for seriously obese bariatric candidates;
Resumo:
Background:Autonomic dysfunction (AD) is highly prevalent in hemodialysis (HD) patients and has been implicated in their increased risk of cardiovascular mortality.Objective:To correlate heart rate variability (HRV) during exercise treadmill test (ETT) with the values obtained when measuring functional aerobic impairment (FAI) in HD patients and controls.Methods:Cross-sectional study involving HD patients and a control group. Clinical examination, blood sampling, transthoracic echocardiogram, 24-hour Holter, and ETT were performed. A symptom-limited ramp treadmill protocol with active recovery was employed. Heart rate variability was evaluated in time domain at exercise and recovery periods.Results:Forty-one HD patients and 41 controls concluded the study. HD patients had higher FAI and lower HRV than controls (p<0.001 for both). A correlation was found between exercise HRV (SDNN) and FAI in both groups. This association was independent of age, sex, smoking, body mass index, diabetes, and clonidine or beta-blocker use, but not of hemoglobin levels.Conclusion:No association was found between FAI and HRV on 24-hour Holter or at the recovery period of ETT. Of note, exercise HRV was inversely correlated with FAI in HD patients and controls. (Arq Bras Cardiol. 2015; [online]. ahead print, PP.0-0)
Resumo:
Background: Exercise is essential for patients with heart failure as it leads to a reduction in morbidity and mortality as well as improved functional capacity and oxygen uptake (v̇O2). However, the need for an experienced physiologist and the cost of the exam may render the cardiopulmonary exercise test (CPET) unfeasible. Thus, the six-minute walk test (6MWT) and step test (ST) may be alternatives for exercise prescription. Objective: The aim was to correlate heart rate (HR) during the 6MWT and ST with HR at the anaerobic threshold (HRAT) and peak HR (HRP) obtained on the CPET. Methods: Eighty-three patients (58 ± 11 years) with heart failure (NYHA class II) were included and all subjects had optimized medication for at least 3 months. Evaluations involved CPET (v̇O2, HRAT, HRP), 6MWT (HR6MWT) and ST (HRST). Results: The participants exhibited severe ventricular dysfunction (ejection fraction: 31 ± 7%) and low peak v̇O2 (15.2 ± 3.1 mL.kg-1.min-1). HRP (113 ± 19 bpm) was higher than HRAT (92 ± 14 bpm; p < 0.05) and HR6MWT (94 ± 13 bpm; p < 0.05). No significant difference was found between HRP and HRST. Moreover, a strong correlation was found between HRAT and HR6MWT (r = 0.81; p < 0.0001), and between HRP and HRST (r = 0.89; p < 0.0001). Conclusion: These findings suggest that, in the absence of CPET, exercise prescription can be performed by use of 6MWT and ST, based on HR6MWT and HRST
Resumo:
Abstract Background: Numerous studies show the benefits of exercise training after myocardial infarction (MI). Nevertheless, the effects on function and remodeling are still controversial. Objectives: To evaluate, in patients after (MI), the effects of aerobic exercise of moderate intensity on ventricular remodeling by cardiac magnetic resonance imaging (CMR). Methods: 26 male patients, 52.9 ± 7.9 years, after a first MI, were assigned to groups: trained group (TG), 18; and control group (CG), 8. The TG performed supervised aerobic exercise on treadmill twice a week, and unsupervised sessions on 2 additional days per week, for at least 3 months. Laboratory tests, anthropometric measurements, resting heart rate (HR), exercise test, and CMR were conducted at baseline and follow-up. Results: The TG showed a 10.8% reduction in fasting blood glucose (p = 0.01), and a 7.3-bpm reduction in resting HR in both sitting and supine positions (p < 0.0001). There was an increase in oxygen uptake only in the TG (35.4 ± 8.1 to 49.1 ± 9.6 mL/kg/min, p < 0.0001). There was a statistically significant decrease in the TG left ventricular mass (LVmass) (128.7 ± 38.9 to 117.2 ± 27.2 g, p = 0.0032). There were no statistically significant changes in the values of left ventricular end-diastolic volume (LVEDV) and ejection fraction in the groups. The LVmass/EDV ratio demonstrated a statistically significant positive remodeling in the TG (p = 0.015). Conclusions: Aerobic exercise of moderate intensity improved physical capacity and other cardiovascular variables. A positive remodeling was identified in the TG, where a left ventricular diastolic dimension increase was associated with LVmass reduction.
Resumo:
RESUMO O morango é uma fruta de alto valor comercial e tem uma rápida deterioração, como a demanda por produtos saudáveis, seguros sob o ponto de vista microbiológico e livre de produtos químicos aumenta cada vez mais, o método de aplicação do gás ozônio em uma atmosfera controlada foi proposto. O objetivo deste trabalho foi verificar a eficiência do gás ozônio produzido por um reator, a fim de que os pequenos produtores de morangos possam usá-lo, contribuindo, assim, para as economias regionais. Morangos (Fragaria ananassa) variedade Oso Grande, colhidasna região de Minas Gerais foram divididas dois grupos: o primeiro recebeu tratamento com ozônio e o segundo não. No primeiro grupo, o ozônio foi aplicado durante 20 minutos a partir de um reator de Corona. Os frutos foram armazenados a 4 ° C, por períodos de 5, 10 e 15 dias. A qualidade dos frutos foi relata a partir dos níveis de sólidos solúveis totais (SS), acidez titulável (AT ), pH, compostos fenólicos (CF), ácido ascórbico (AA), perda de massa fresca (PM%) e análise microbiológica (AM), em diferentes tempos de armazenamento de frutos ozonizados e não ozonizados. O uso de gás ozônio foi eficiente para a pós-colheita de morango. Os níveis de microrganismos estão dentro dos limites aceitáveis e as propriedades físicas e químicas foram mantidas.
Resumo:
A flow injection spectrophotometric procedure with on-line solid-phase reactor containing ion triiodide immobilized in an anion-exchange resin is proposed for the determination of adrenaline (epinephrine) in pharmaceutical products. Adrenaline is oxidized by triiodide ion immobilized in an anionic-exchange resin yielding adrenochrome which is transported by the carrier solution and detected at a wavelength of 488 nm. Adrenaline was determined in three pharmaceutical products in the 6.4 x 10-6 to 3.0 x 10-4 mol L-1 concentration range with a detection limit of 4.8 x 10-7 mol L-1. The recovery of this analyte in three samples ranged from 96.0 to 105 %. The analytical frequency was 80 determinations per hour and the RSDs were less than 1 % for adrenaline concentrations of 6.4 x 10-5 and 2.0 x 10-4 mol L-1 (n=10). A paired t-test showed that all results obtained for adrenaline in commercial formulations using the proposed flow injection procedure and a spectrophotometric batch procedure agree at the 95% confidence level.
Resumo:
Physiological and biochemical aspects of assai palm during seed germination and early seedling growth were investigated. Seeds collected from plants growing in flooded and upland forests were used to determine the influence of normoxic (aerobic) and anoxic (anaerobic) conditions in germination and the initial and average time of development in the roots and shoots. After 75 days, seedlings germinated under normoxia were transferred to trays and submitted to flooding. Seed reserves (lipids, proteins, soluble sugars and starch) were monitored for quiescent and germinated seeds maintained under normoxic and anoxic conditions, as well as after 5, 10 and 20 days of seedling growth. Alcohol dehydrogenase (ADH) activity was quantified in roots and leaves of seedlings without or with flooding (partial and total). Seeds were not able to germinate under anoxia. Different strategies of storage mobilization of lipids, proteins, soluble sugars and starch were observed in seeds of each environment. ADH activity was induced by anoxia, with the highest level observed in the leaves. This study showed that, under normoxic conditions, the best developmental performance of assai palm seeds, from flooded or upland forest areas, during germination was associated with primary metabolites mobilization and seedling flooding tolerance with increased ADH activity. We conclude that the assai palm is well adapted to the anoxic conditions provoked by flooding.
Resumo:
The aim of this study was to evaluate the efficiency of a sequencing batch reactor (SBR) on biological removal of nitrogen from cattle slaughterhouse wastewater by nitrification/denitrification processes. The effects of initial concentration of ammoniacal nitrogen were investigated at 100; 150 and 200 mg L-1 and air flow rate at 0.125; 0.375 and 0.625 L min¹ Lreactor-1 on the nitrogen compounds removal, by a Central Composite Rotational Design (CCRD) configuration. There were variations from 9.2 to 94.9%, 4.0 to 19.6% and 20.8 to 92.0% in the conversion of ammoniacal nitrogen to nitrate and nitrite concentration and removal of total nitrogen, respectively. The increase of air flow rate and decrease of the initial concentration of ammoniacal nitrogen resulted in higher efficiencies of total nitrogen removal, as well as the conversion of ammoniacal nitrogen to nitrate. During the pre-established intervals of this study, the removal and conversion efficiencies of nitrogen compounds above 85% were achieved in air flow rate variations from 0.375 to 0.725 L min-1 Lreactor-1 and initial concentration of ammoniacal nitrogen from 80 to 200 mg L-1. On denitrification process, we obtained efficiencies from 91.5 to 96.9% on the removal of nitrite/nitrate and from 78.3 to 87.9% on the removal of organic matter.
Resumo:
The cassava starch industries generate a large volume of wastewater effluent that, stabilized in ponds, wastes its biogas energy and pollutes the atmosphere. To contribute with the reversion of this reality, this manipueira treatment research was developed in one phase anaerobic horizontal pilot reactor with support medium in bamboo pieces. The reactor was excavated into the ground and sealed with geomembrane in HDPE, having a volume equal to 33.6 m³ and continuous feeding by gravity. The stability indicators were pH, volatile acidity/total alkalinity ratio and biogas production. The statistical analyses were performed by a completely randomized design, with answers submitted to multivariate analysis. The organical loads in COD were 0.556; 0.670; 0.678 and 0.770 g L-1 and in volatile solids (VS) of 0.659; 0.608; 0.570 and 0.761 g L-1 for the hydraulic retention times (HRT) of 13.0; 11.5; 10.0 and 7.0 days, respectively. The reductions in COD were 88; 80; 88 and 67% and for VS of 76; 77; 65 and 61%. The biogas productions relatively to the consumed COD were 0.368; 0.795; 0.891 and 0.907 Lg-1, for the consumed VS of 0.524; 0.930; 1.757 and 0.952 Lg-1 and volumetric of 0.131; 0.330; 0.430 and 0.374 L L-1 d-1. The reactor remained stable and the bamboo pieces, in visual examination at the end of the experiment, showed to be in good physical conditions.