43 resultados para advanced oxidation processes
em Scielo Saúde Pública - SP
Resumo:
Conventional technology used in the treatment of wastewater has been pointed as a major environmental problem for sustainable development, since minimization is not addressed accordingly. Advanced oxidation processes (AOP), based on the formation of hydroxyl radical (OH), a powerful oxidant agent, have been considered to be a potential technology for the destruction of many toxic compounds. Photocatalysis using solar light, an AOP, has been studied for nearly 20 years and recently attracted great interest as a clean-up technology. However, solar detoxification processes have not yet achieved commercial success. This article presents an overview of reaction mechanisms at the surface of semiconductors used as photocatalysts (specially TiO2), when heterogeneous photocatalysis is used to remove hazardous compounds from contaminated sites.
Resumo:
In this study the efficiency of advanced oxidative processes (AOPs) were investigated toward the degradation of aqueous solutions containing benzene, toluene and xylenes (BTX). The results indicated that BTX can be effectively oxidized by the UV-A-assisted photo-Fenton process. The treatment permits almost total degradation of BTX and removal of more than 80% of the phenolyc intermediates at reaction times of about 30 min. Preliminary investigations using solar light suggest a good potentiality of the process for the treatment of large volumes of aqueous samples containing these polluting species.
Resumo:
Efforts presented by the scientific community in recent years towards the development of numerous green chemical processes and wastewater treatment technologies are presented and discussed. In the light of these approaches, environmentally friendly technologies, as well as the key role played by the well-known advanced oxidation processes, are discussed, giving special attention to the ones comprising ozone applications. Fundamentals and applied aspects dealing with ozone technology and its application are also presented.
Resumo:
Many industrial processes produce effluents with a wide variety of xenobiotic organic pollutants, which cannot be efficiently degraded by conventional biological treatments. Thus, the development of new technologies to eliminate these refractory compounds in water has become very imperative in order to assure the quality of this important resource. Ozonation is a very promising process for the treatment of wastewaters containing non-easily removable organic compounds. The present work aims at highlighting new methods of enhancing the efficiency of ozone towards the removal organic pollutants in aqueous solution. Special attention is given to catalytic ozonation processes contemplating homo- and heterogeneous catalysis, their activity and mechanisms. Recent results and future prospects about the application of these processes to real effluents are also evaluated.
Resumo:
Wastewater and soil treatment processes based on Fenton's reagent have gained great attention in recent years due to its high oxidation power. This review describes the fundaments of the Fenton and photo-Fenton processes and discusses the main aspects related to the degradation of organic contaminants in water such as the complexation of iron, the use of solar light as the source of irradiation and the most important reactor types used. An overview of the main applications of the process to a variety of industrial wastewater and soil remediations is presented.
Resumo:
In this work, the efficiency of some homogeneous advanced oxidation processes (UVC/H2O2, Fe2+/H2O2, UVC/Fe2+/H2O2, UVA/Fe2+/H2O2, solar/Fe2+/H2O2) was investigated toward the degradation of geosmin and 2-methylisoborneol (2-MIB). The effect of relevant experimental parameters (ie. pH, Fe2+ and H2O2 concentration) was first investigated by factorial design, using camphor as a model substrate. In the geosmin and 2-MIB degradation studies the Fenton processes assisted by solar and UVA radiation offered the most promising results, mainly on account of high degradation capacity (higher than 80% at a reaction time of 60 min), high operational simplicity and low cost.
Resumo:
Three technologies were tested (TiO2/UV, H2O2/UV, and TiO2/H2O2/UV) for the degradation and color removal of a 25 mg L-1 mixture of three acid dyes: Blue 9, Red 18, and Yellow 23. A low speed rotating disc reactor (20 rpm) and a H2O2 concentration of 2.5 mmol L-1 were used. The dyes did not significantly undergo photolysis, although they were all degraded by the studied advanced oxidation processes. With the TiO2/H2O2/UV process, a strong synergism was observed (color removal reached 100%). Pseudo first order kinetic constants were estimated for all processes, as well as the respective apparent photonic efficiencies.
Resumo:
The concern about aquatic ecosystems and the potential risk of drinking water contamination by pharmaceuticals have stimulated the study of processes for the efficient degradation of these contaminants, since the conventional treatment have been inefficient on that purpose. The advanced oxidation processes (AOPs) appear as viable alternatives due to their efficiency on the degradation of different classes of organic contaminants. This review presents an overview of the main AOP (O3, H2O2/UV, TiO2/UV, Fenton and photo-Fenton) which have been applied to the degradation of different pharmaceuticals. The main results obtained, intermediates identified and toxicity data are presented.
Resumo:
An alternative for landfill leachate treatment are advanced oxidation processes by Fenton's reagent (AOP/Fenton). In this context, the aim of this paper was to evaluate, in a bench scale, the treatability of leachate pós-AOP/Fenton characterizing the supernatant and the sludge generated separately. Observed in optimal conditions, high removal efficiency of COD (76.7%), real color (76.4%) and humic substances (50%). Organic compounds were detected in the sludge (2.465 mg COD L-1) and high concentration of iron (1.757 mg L-1) as was expected. Finally, the sludge generated showed low settling hindering their separation by sedimentation (SVI = 321 mL g-1).
Resumo:
Flumequine degradation by electrochemical and photo-electrochemical processes was evaluated in this study. The antimicrobial activity of the solutions subjected to the electrochemical processes was monitored during the assays. The experiments were carried out using DSA® (dimensionally stable anode) electrode. The influence of current density was investigated for the 7.5 to 45 mA cm-2 range. The photo-electrochemical process was more efficient for degrading flumequine (85%) and reducing solution antimicrobial activity. For both processes, the residual antimicrobial activity decreased as flumequine degradation increased. The reaction intermediate m/z 244 (5-methyl-1-oxo-6,7-dihydro-1H,5H-pyrido[3,2,1-ij]quinoline-2-carboxylic acid) was identified.
Resumo:
Silica gel is widely used as adsorbent for isolating and purifying natural compounds. Intensive use and high cost make this process expensive and generate solid residues contaminated with many different organic compounds. In the present work a simple method for recycling silica was investigated, by using Advanced Oxidative Processes. Silica gel was treated with H2O2/solar light and compared with a sample treated by conventional methods (high temperature and oxidation with KMnO4). High temperature treatment changes the structure of the silica and, consequently, the separation efficiency. Oxidation by using KMnO4 requires multiple steps and produces residues, including manganese and oxalic acid. The method using H2O2/solar light to recuperate silica gel does not modify its separation efficiency and is less expensive than the traditional methods. Additionally, HPLC and GC-MS analysis indicate that H2O2/solar light eliminates all residues of the silica gel.
Resumo:
In an effort to minimize the impact on the environment, removal of pollutants, such as phenolic compounds, from the industrial wastewater has great importance nowadays because of the high toxicity and low biodegradability of these compounds. This work discusses the different methods to remove these compounds from industrial wastewater, showing their advantages and disadvantages. Advanced Oxidation Process (AOPs) are presented as a promising technology for the treatment of wastewater containing phenolic compounds. Among the AOPs, photolysis, photocatalysis and the processes based on hydrogen peroxide and on ozone are discussed with emphasis on the combined processes and the oxidation mechanisms.
Resumo:
Food industries employ a lot of synthetic dyes in their products. Most of these dyes are very stable face to the conventional treatments. This work studied the use of advanced oxidation process (AOP) as an alternative to the conventional ones to degrade a synthetic food effluent (photolysis and UV/H2O2 in continuous reactor). The more efficient process was the UV/H2O2 and it presented decoloration and degradation energetic efficiency values equal to 30.775 kWh m-3 and 269.909 kWh m-3, respectively. The color reduction was 96.4% and COD decrease was 38.56%.
Resumo:
This article gives some basic principles of heterogeneous photocatalysis using titanium dioxide as photocatalyst and the state of art of its applications to the abatement of aqueous and atmospheric pollutants.
Resumo:
The present experiment describes the preparation, characterization of n-butyl(pyridil)cobaloxime complex and its electrochemical property. The infrared and uv-visible absorption spectra were used to characterize the complex obtained. The infrared spectrum of the compound showed characteristics bands that indicated the formation of the Co-C chemical bond formation. The electronic absorption spectrum in acetonitrile showed transition bands attributed to p-p*, metal-to-ligand charge transfer, d-d transitions and charge transfer Co-C. The electrochemical property was investigated by the pulse differential voltammetry technique. Two oxidation processes: Co(I)/Co(II) at -423 mV and Co(II)/Co(III) at 752 mV were observed.