18 resultados para ab-initio molecular dynamics simulations, chemical hydrogen storage, anhydride proton conduction
em Scielo Saúde Pública - SP
Resumo:
The adsorption of H and S2- species on Pd (100) has been studied with ab initio, density-functional calculations and electrochemical methods. A cluster of five Pd atoms with a frozen geometry described the surface. The computational calculations were performed through the GAUSSIAN94 program, and the basis functions adapted to a pseudo-potential obtained by using the Generator Coordinate Method adapted to the this program. Using the cyclic voltammetry technique through a Model 283 Potentiostat/Galvanostat E.G.&G-PAR obtained the electrochemical results. The calculated chemisorption geometry has a Pd-H distance of 1.55Å, and the potential energy surface was calculated using the Becke3P86//(GCM/DFT/SBK) methodology. The adsorption of S2- ions on Pd surface obtained both through comparison between the experimental and theoretical results, at MP2 level, suggest a S2- absorption into the metallic cluster. The produced Pd-(S2-) system was show to be very stable under the employed experimental conditions. The paper has shows the powerful aid of computational methods to interpret adsorption experimental data.
Resumo:
The determination of the molecular structure of molecules is of fundamental importance in chemistry. X-rays and electron diffraction methods constitute in important tools for the elucidation of the molecular structure of systems in the solid state and gas phase, respectively. The use of quantum mechanical molecular orbital ab initio methods offer an alternative for conformational analysis studies. Comparison between theoretical results and those obtained experimentally in the gas phase can make a significant contribution for an unambiguous determination of the geometrical parameters. In this article the determination of the molecular structure of the cyclooctane molecule by electron diffraction in the gas phase and ab initio calculations will be addressed, providing an example of a comparative analysis of theoretical and experimental predictions.
Resumo:
A study was carried out on the urea geometries using ab initio calculation and Monte Carlo computational simulation of liquids. The ab initio calculated results showed that urea has a non-planar conformation in the gas phase in which the hydrogen atoms are out of the plane formed by the heavy atoms. Free energies associated to the rotation of the amino groups of urea in water were obtained using the Monte Carlo method in which the thermodynamic perturbation theory is implemented. The magnitude of the free energy obtained from this simulation did not permit us to conclude that urea is non-planar in water.
Resumo:
Ab initio Hartree-Fock (HF), Density Functional (B3LYP) and electron correlation (MP2) methods have been used to caracterize the aqueous medium intramolecular hydrogen bond in a-alanine. The 6-31G* and 6-31++G** were taken from Gaussian94 library. We were concerned on the structure of three conformers of a-alanine, in their neutral form plus on the structure of the zwitterionic form (Z). The Z structure is a stationary point at the HF/6-31G* level but it is not when diffuse functions and electron correlation are included. This results shows that the Z form does not exist in the gas phase. The inclusion of solvent effects changed significantly the results obtained in gas phase, therefore this inclusion make the Z form a stationary point within all level of theory, and the relative energy depends dramatically on the level of calculation.
Resumo:
In this paper, we report the stability of the Li(HF)3- molecular anion calculated at the MP2/6-31++G** and CCSD(T)/6-31++G** level of theory. Five possible conformers of Li(HF)3- molecular anions have been determined employing ab initio MP2 method with 6-31++G** basis set. The most stable conformer of five Li(HF)3- anions is in a cyclic ring structure Li(HF)3-(1). From our calculations we show that the molecule is stable towards electron attachment, with an electron adiabatic electron affinity (AEA) of 199.5 meV (233.1 meV with zero point energy correction) and 471.3 meV at the MP2 and CCSD(T) levels, respectively. In addition we present vertical detachment energies of 230.2 meV and 795.8 meV at the MP2, CCSD(T), respectively. The importance of the latter has to do with the ability of experimental detection of this value.
Resumo:
The objective of this study is to understand the structural flexibility and curvature of the E2 protein of human papillomavirus type 18 using molecular dynamics (6 ns). E2 is required for viral DNA replication and its disruption could be an anti-viral strategy. E2 is a dimer, with each monomer folding into a stable open-faced β-sandwich. We calculated the mobility of the E2 dimer and found that it was asymmetric. These different mobilities of E2 monomers suggest that drugs or vaccines could be targeted to the interface between the two monomers.
Resumo:
Results of high level ab initio calculations of the intermolecular potentials and theoretical dispersion coefficients for the Ne2 and Ar2 dimers were utilized to build analytical potentials for these species. The obtained potentials were used in the calculation of the dimers rovibrationals levels, and their respective spectroscopic constants determined. A comparison of high level experimental data with our theoretical results shows a very good agreement for Ne2, and also a good agreement for the Ar2 dimer.
Resumo:
This paper deals with Carathédory's formulation of the second law of thermodynamics. The material is presented in a didatical way, which allows a second year undergraduate student to follow the formalism. An application is made to an ideal gas with two independent variables. A criticism to Carnot formulation of the second law and an investigation of the historical origins of the Carathéodory formalism are also presented.
Resumo:
In this paper a methodology for the computation of Raman scattering cross-sections and depolarization ratios within the Placzek Polarizability Theory is described. The polarizability gradients are derived from the values of the dynamic polarizabilities computed at the excitation frequencies using ab initio Linear Response Theory. A sample application of the computational program, at the HF, MP2 and CCSD levels of theory, is presented for H2O and NH3. The results show that high correlated levels of theory are needed to achieve good agreement with experimental data.
Resumo:
This work reviews some applications of ab initio molecular orbital calculations to the elucidation of structures of interstellar molecules. The case of the CnNH (n=1, 3 and 5 ) carbenes is extensively analyzed and discussed. Theoretical conformational analysis and predicted values for the rotational constants and dipole moments of the singlet state of C5NH are reported for the first time and a comparison is performed with results previously obtained for C3NH and CNH.
Resumo:
A series of open source benchmarks for computer performance analysis of personal computers with a focus on computational chemistry calculations is presented. The results returned by these tests are discussed and used to correlate with the actual performance of a set of computers available for research on two computing intensive fields of chemistry, quantum chemical and molecular simulation calculations.
Resumo:
In this paper we review the basic techniques of performance analysis within the UNIX environment that are relevant in computational chemistry, with particular emphasis on the execution profile using the gprof tool. Two case studies (in ab initio and molecular dynamics calculations) are presented in order to illustrate how execution profiling can be used to effectively identify bottlenecks and to guide source code optimization. Using these profiling and optimization techniques it was possible to obtain significant speedups (of up to 30%) in both cases.
Resumo:
A methodology is presented to obtain force field parameters to be used in molecular mechanics. The case of Ru(II) is investigated and the parameters obtained, specially its covalent radii, are employed to model Ru(II) coordination compound. The combined use of molecular mechanics with ab initio methods allowed us to predict the metal-ligand stretching force constant for Ru(II) coordination compounds.
Resumo:
The structure and hydration of the HNP-3 have been derived from molecular dynamics data using root mean square deviation, radial and energy distributions. Three antiparallel beta sheets were found to be preserved. 15 intramolecular hydrogen bonds were identified together with 36 hydrogen bonds on the backbone and 35 on the side chain atoms. From the point of view of the hydration dynamics, the analysis shows a high solvent accessibility of the monomer and attractive interactions with water molecules.
Resumo:
In the present work, we analyzed the accuracy of distinct theoretical methods to reproduce the solid state structures of cyclodextrins. The a, b and g-cyclodextrins (CD) were considered and also their hydrates with included water molecules: a-CD.2H2O, b-CD.10H2O and g-CD.12H2O. The geometries were fully optimized using Molecular Mechanics (MM2), semiempirical (AM1 and PM3) and ab initio (HF/3-21G) methods and quantitatively compared with experimental data from X ray diffraction. The results obtained from the classical MM2 method were in best agreement with the experiment. The semiempirical and ab initio structures were also in satisfactory accordance with the experimental data. In general, the PM3 method was found to be more suitable than the AM1 to describe the CD geometries, mainly when the intramolecular hydrogen bonds are considered.