20 resultados para ZETA TAURI
em Scielo Saúde Pública - SP
Resumo:
Zeta plus filter membranes (ZP60S) have been shown to be efficient for rotavirus concentration from wastewater and for the reduction of cytotoxicity for cell cultures. Recently a variability in both properties was observed. In view of the low costs and the high virus recovery rates obtained in the past, we re-evaluated the application of ZP60S filter membranes for virus concentration from environmental samples. Some factors that could interfere with the concentration strategy using ZP60S were also considered and assessed including the type of water to be filtered and the possible release of toxic substances from the membrane matrix during filtration.
Resumo:
Simian rotavirus SA-11, experimentally seeded, was recovered from raw domestic sewage by a two-step concentration procedure, using filtration through a positively charged microporous filter (Zeta Plus 60 S) followed by ultracentrifugation, effecting an 8,000-fold concentration. By this method, a mean recovery of 81% ± 7.5 of the SA-11 virus, was achieved
Resumo:
Nanoparticles of yttrium iron garnet (YIG) were obtained by coprecipitation. The particles were prepared by hydrolysis in acid medium with addition of ammonia or urea, for homogeneous nucleation, at 90ºC. Different compositions and spherical morphologies were achieved by changing reactants concentrations and precipitation agent. X-ray diffractometry, transmission electron microscopy, differential thermal analysis and electrophoretic mobility were carried out on these particles to investigate the obtained phase, phase transition temperature, morphology, particle size and zeta potential, respectively.
Resumo:
This paper describes the adsorption of an oligothymidylate (pdT16) on nanoemulsions obtained by spontaneous emulsification procedures. Formulations were composed by medium chain triglycerides, egg lecithin, glycerol, water (NE) and stearylamine (NE SA). After optimization of operating conditions, the mean droplet size was smaller than 255 nm. Adsorption isotherms showed a higher amount of pdT16 adsorbed on cationic NE SA (60 mg/g) compared to NE (20 mg/g). pdT16 adsorption was also evidenced by the inversion of the zeta-potential of NE SA (from +50 to -30 mV) and the morphology of oil droplets examined through transmission electron microscopy. The overall results showed the role of electrostatic interactions on the adsorption of pdT16 on the oil/water interface of nanoemulsions.
Resumo:
This work reports the development of polymeric nanocapsules containing lipoic acid prepared by interfacial deposition of poli(ε-caprolactona). The suspensions showed acid pH and encapsulation efficiencies from 77 to 90%. Zeta potential values were from -7.42 to -5.43 mV and particle sizes were lower than 340 nm with polidispersion lower than 0.3. The stability of nanocapsules within 28 days was evaluated in terms of pH, lipoic acid content, diameter, size distribution, zeta potential and measurements of relative light backscattering. The stability of formulations containing free lipoic acid was also evaluated. Nanoencapsulation drastically improved the physico-chemical stability of lipoic acid.
Resumo:
In this paper we describe the preparation poly (L-lactide) (PLA) nanocapsules as a drug delivery system for the local anesthetic benzocaine. The characterization and in vitro release properties of the system were investigated. The characterization results showed a polydispersity index of 0.14, an average diameter of 190.1± 3 nm, zeta potential of -38.5 mV and an entrapment efficiency of 73%. The release profile of Benzocaine loaded in PLA nanocapsules showed a significant different behavior than that of the pure anesthetic in solution. This study is important to characterize a drug release system using benzocaine for application in pain treatment.
Resumo:
In this paper, we describe the preparation of alginate nanoparticles as a delivery system for the herbicide clomazone. Two different methods were investigated and characterized by size distribution, zeta potencial, pH and in vitro release. The alginate/AOT nanoparticles had higher rates of association of the herbicide clomazone than alginate/chitosan nanoparticles. Clomazone release profile, showed a significant difference in release behavior of pure herbicide in solution when compared with herbicide loaded in both alginate nanoparticles. This study is important to construct a biodegradable release system using herbicide for later release into more specific targets, avoiding contamination of environmental matrices.
Resumo:
Effects of vinasse, P sorption and the interaction vinasse-phosphorus on zeta potential and point of zero charge (PZC) as well as the effects of vinasse on P sorption on clay-fraction samples from two soils were evaluated. The vinasse and P sorption influenced the surface charge of clay fraction of both soils. Sorption of P increased negative charges from soil particles reducing PZC. These effects were more pronounced when clay fraction was previously treated with vinasse. Vinasse treatment reduced P sorption, probably due to coating of P-adsorption sites and by enhancing the negative charges.
Resumo:
Solid lipid nanoparticles (SLN), nanoemulsions (NE), and microemulsions (ME) were prepared by the hot solvent diffusion method, using tristearin or castor oil as oily phase, and soy lecithin and Solutol HS 15 as surfactants. Mean particle sizes ranged from 20 to 215 nm and negative zeta potentials were obtained for all nanocarriers. A HPLC method used to determine resveratrol was specific, linear, exact and precise. The entrapment efficiency was high for all formulations. However, resveratrol content was significantly varied among the lipid nanocarriers. Lipid nanocarrier containing hydrogels exhibiting pseudoplastic behavior were obtained after incorporation of hydroxyethylcellulose in the colloidal dispersions.
Resumo:
Nanoparticles were produced by solvent emulsification evaporation method with the following characteristics: nanometric size (238 ± 3 nm), narrow polydispersity index (0.11), negative zeta potential (-15.1 mV), good yield of the process (73 ± 1.5%), excellent encapsulation efficiency (81.3 ± 4.2%) and spherical shape. X-rays diffraction demonstrated the loss of drug crystallinity after encapsulation; however, the profile of the diffractograms of the poly-ε-caprolactone (PCL) nanoparticles was kept. Differential scanning calorimetry thermograms, correspondingly, exhibited the loss of drug melting peak and the increasing of the melting point of the PCL nanoparticles, evidencing an interaction drug-polymer. Naproxen release was low and sustained obeying the Higuchi´s kinetic. The results show that nanoparticles are promising sustained release system to the naproxen.
Resumo:
The goal of this study was to evaluate the feasibility of preparing nanocapsules and nanoemulsions using tea tree oil as oily phase aiming to protect its volatilization. The nanostructures presented nanometric mean size (160-220 nm) with a polydispersity index below 0.25 and negative zeta potential. The pH values were 6.43 ± 0.37 and 5.98 ± 0.00 for nanoemulsions and nanocapsules, respectively. The oil content after preparation was 96%. The inclusion of tea tree oil in nanocapsules showed higher protection against volatilization. The analysis of mean size and polydispersity index of formulations presented no significant alteration during the storage time.
Resumo:
In this study, polymeric nanocapsules of PCL containing the herbicide atrazine were prepared. In order to optimize the preparation conditions, a 2³ factorial design was performed using different formulations of nanocapsules, which investigated the influence of three variables at two levels. The factors varied were the quantities of PCL, Span 60 and Myritol. The results were evaluated considering the size, polydispersity, zeta potential and association rate and the measures of these parameters were taken immediately after preparation and after 30 days of preparation. The formulations with minimum level of polymer in the preparation showed better stability results.
Resumo:
In this work, theospheres (innovative lipid nanoparticles) were prepared by the high pressure homogenization technique using different surfactants for dapsone encapsulation. Mean particle size ranged from 105 to 153 nm and negative zeta potentials were obtained for all theosphere formulations. Atomic force microscopy images confirmed the spherical shape of theospheres. The HPLC method used to determine dapsone-loaded theospheres was selective, linear, exact and precise. The entrapment efficiency of dapsone was 91.4%. Theospheres provided controlled release of idebenone (52.7 ± 1.6%) in comparison to the free drug (103.1 ± 1.9%).
Resumo:
Nanoemulsions composed of a medium-chain triglyceride oil core stabilized by rapeseed or sunflower lecithins were prepared by spontaneous emulsification and high-pressure homogenization. These nanoemulsions are compared with formulations stabilized by egg lecithin. Nanoemulsions obtained by high-pressure homogenization display larger droplet size (230 to 440 nm) compared with those obtained by spontaneous emulsification (190 to 310 nm). The zeta potentials of the emulsions were negative and below -25 mV. Zeta potential inversion occurred between pH 3.0 and 4.0. The results demonstrate the feasibility of preparing lipid emulsions comprising rapeseed or sunflower lecithins by spontaneous emulsification and high-pressure homogenization.
Resumo:
Water-soluble CdTe quantum dots are synthesized to investigate how short-chain surface ligands bearing -SH, -COOH, and -NH2 groups interact with CdTe during nucleation/growth processes. Their optical properties and colloidal stability after the ligand exchange are also investigated. We then characterize the resulting CdTe by fluorescence, UV–Vis absorption, and infrared spectroscopies. The stability of the colloidal dispersions was determined by their Zeta potentials. The results show that in the synthesis of water-soluble CdTe, surface ligands with at least two functional groups are required and the hard/soft character of them is an important factor in the stability of CdTe.