6 resultados para Xylenol
em Scielo Saúde Pública - SP
Resumo:
The variety of soils in the State of Acre is wide and their chemical profiles are still not fully understood. The nature of the material of origin of these soils is indicated by the high aluminium (Al) content, commonly associated with high calcium (Ca) and magnesium (Mg) contents. The study objective was to use different methods to quantify Al in soils from toposequences formed from material of a sedimentary nature originating from the Solimões Formation, in Acre, Brazil. Trenches were opened at three distinct points in the landscape: shoulder, backslope and footslope positions. Soil samples were collected for physical, chemical, mineralogical analyses. The Al content was quantified using different methods. High Al contents were found in most of these horizons, associated with high Ca and Mg levels, representing the predominant cations in the sum of exchangeable bases. The mineralogy indicates that the soils are still in a low weathering phase, with the presence of significant quantities of 2:1 minerals. Similar Al contents were determined by the methods of NaOH titration, xylenol orange spectrometry and inductively coupled plasma optical emission spectrometry. However, no consistent data were obtained by the pyrocatechol violet method. Extraction with KCl overestimated the exchangeable Al content due to its ability to extract the non-exchangeable Al present in the smectite interlayers. It was observed that high Al contents are related to the instability of the hydroxyl-Al smectite interlayers.
Resumo:
This article describes the combination of low- and high-pressure flow systems for the determination of Magnesium, Calcium and Strontium by flame atomic absorption spectrometry (FAAS). In the low-pressure system a short C-18 RP column (length 0,5 cm) was utilized for the preconcentration/matrix separation step, xylenol orange was used as chelating agent and tetrabutylamonium acetate for ion pair formation. The hydraulic high pressure nebulization (HHPN) was used for sample transport and sample introduction in the high pressure system. The repeatabilities and detection limits for Mg, Ca and Sr were determined and compared with those obtained by pneumatic nebulization (PN). The results show that the detection limits obtained using the HHPN for Mg, Ca and Sr are between 1.5 to 2 times better than those obtained by PN when the signal transient was measured in area. The system presented a sampling frequency of 130 h-1 for direct determination of Mg, Ca or Sr in samples of saturated sodium chloride used in the production of chlorine and sodium hydroxide.
Resumo:
This work presents zinc determination in certain medicines that contain zinc oxide and zinc undecylenate. The technique consists of a spectrophotometric micro-scale titration, where EDTA is used as titrant, and xylenol orange as an indicator, in a medium adjusted to pH = 6 with acetic acid and sodium acetate. After each added portion of EDTA, the absorbance value is measured at a selected wavelength, in order to detect the end-point of the spectrophotometric titration. The results already obtained are satisfactory and promote student's interest. An additional contribution intends to propose the use of micro-scale techniques.
Resumo:
The aim of the present study was to compare healing obtained with biomembranes with the natural healing process (sham) using biochemical and immunohistological assays. C57BL/6 mice were divided into 4 groups of 15 mice each and received different subcutaneous implants: natural latex biomembrane (NLB), denatured latex (DL), expanded polytetrafluorethylene (ePTFE), or sham. On the 2nd, 7th, and 14th days post-treatment, 5 mice per group were sacrificed and biopsied for the following measurements: oxidative stress based on malondialdehyde (MDA), myeloperoxidase (MPO) and hydrogen peroxide by the method of ferrous oxidation-xylenol orange (FOX), as well as glutathione and total proteins; histological evaluation to enumerate inflammatory cells, fibroblasts, blood vessels, and collagen, and immunohistochemical staining for inducible nitric oxide synthase, interleukin-1β, vascular endothelial growth factor (VEGF), and transforming growth factor-β1 (TGF-β1). On day 2 post-treatment, NLB stimulated a dense inflammatory infiltrate mainly consisting of polymorphonuclear cells, as indicated by increased MPO (P < 0.05), but oxidative stress due to MDA was not observed until the 7th day (P < 0.05). The number of blood vessels was greater in NLB (P < 0.05) and DL (P < 0.05) mice compared to sham animals on day 14. NLB induced fibroplasia by day 14 (P < 0.05) with low expression of TGF-β1 and collagenesis. Thus, NLB significantly induced the inflammatory phase of healing mediated by oxidative stress, which appeared to influence the subsequent phases such as angiogenesis (with low expression of VEGF) and fibroplasia (independent of TGF-β1) without influencing collagenesis.
Resumo:
We evaluated the potential neuroprotective effect of 1-100 µM of four organoselenium compounds: diphenyl diselenide, 3’3-ditri-fluoromethyldiphenyl diselenide, p-methoxy-diphenyl diselenide, and p-chloro-diphenyl diselenide, against methylmercury-induced mitochondrial dysfunction and oxidative stress in mitochondrial-enriched fractions from adult Swiss mouse brain. Methylmercury (10-100 µM) significantly decreased mitochondrial activity, assessed by MTT reduction assay, in a dose-dependent manner, which occurred in parallel with increased glutathione oxidation, hydroperoxide formation (xylenol orange assay) and lipid peroxidation end-products (thiobarbituric acid reactive substances, TBARS). The co-incubation with diphenyl diselenide (100 µM) completely prevented the disruption of mitochondrial activity as well as the increase in TBARS levels caused by methylmercury. The compound 3’3-ditrifluoromethyldiphenyl diselenide provided a partial but significant protection against methylmercury-induced mitochondrial dysfunction (45.4 ± 5.8% inhibition of the methylmercury effect). Diphenyl diselenide showed a higher thiol peroxidase activity compared to the other three compounds. Catalase blocked methylmercury-induced TBARS, pointing to hydrogen peroxide as a vector during methylmercury toxicity in this model. This result also suggests that thiol peroxidase activity of organoselenium compounds accounts for their protective actions against methylmercury-induced oxidative stress. Our results show that diphenyl diselenide and potentially other organoselenium compounds may represent important molecules in the search for an improved therapy against the deleterious effects of methylmercury as well as other mercury compounds.
Resumo:
The objective of the present study was to investigate the effects of eccentric training on the activity of mitochondrial respiratory chain enzymes, oxidative stress, muscle damage, and inflammation of skeletal muscle. Eighteen male mice (CF1) weighing 30-35 g were randomly divided into 3 groups (N = 6): untrained, trained eccentric running (16°; TER), and trained running (0°) (TR), and were submitted to an 8-week training program. TER increased muscle oxidative capacity (succinate dehydrogenase and complexes I and II) in a manner similar to TR, and TER did not decrease oxidative damage (xylenol and creatine phosphate) but increased antioxidant enzyme activity (superoxide dismutase and catalase) similar to TR. Muscle damage (creatine kinase) and inflammation (myeloperoxidase) were not reduced by TER. In conclusion, we suggest that TER improves mitochondrial function but does not reduce oxidative stress, muscle damage, or inflammation induced by eccentric contractions.