137 resultados para Wheat Grain Cooking
em Scielo Saúde Pública - SP
Resumo:
Oryzaephilus surinamensis is one of most common insect pest of grains and a variety of stored products, and has been found in high numbers in almost all storage facilities. However, laboratory mass rearing of this insect for bioassays is not a simple task, mainly because of its feeding behavior, small size, and high mobility. Thus, the aim of this work was to develop a simple and efficient laboratory rearing method for O. surinamensis, using wheat kernels milled into different granulometry to obtain large number and standardized population at different life stages for bioassays. The adults were collected from storage grain facilities in the southern region of Brazil and 100 specimens were placed inside glass jars with wheat kernels milled at different grades and kept at 25±0.5ºC and 65±5% relative humidity. The insects were allowed to copulate and lay eggs for 10 days and then removed. The number of eggs, larvae, and pupae was counted at five-day intervals; longevity of the second generation adults was evaluated. The kernels milled at grade 20 were the best medium for offspring production: 89% of eggs by the 5th day; 30.5% larvae by the 10th day; 43% pupae by the 30th day and 63.4% adults at the 46th day. The adults survived up to 450 days. Culturing O. surinamensis under the described conditions, transferring the parental adults by the 10th day after infestation and replacing the media when population builds up will produce enough insects of each stage for various laboratory bioassays.
Resumo:
The objective of this work was to evaluate the influence of different grazing periods on beef animal production and on wheat forage and grain yield. The experiment was carried out in Pato Branco, PR, Brazil. Six grazing periods were evaluated (0, 21, 42, 63, 84, and 105 days) on dual-purpose wheat cultivar BRS Tarumã. Purunã steers, with average live weight of 162 kg and ten months of age, were kept under continuous grazing using a variable stocking rate, in order to maintain the established sward height of 25 cm. Greater increases in total animal gain (TAG) occurred with longer grazing periods. However, there was little increase after 63 days (490 kg ha-1), and TAG decreased from 552 to 448 kg ha-1 between 84 and 105 days. Grain yield decreased from 2,830 to 610 kg ha-1 when the grazing period increased from 0 to 105 days, but there was little change after 63 days (750 kg ha-1). Cultivar BRS Tarumã shows excellent animal production potential, and the decision on how long wheat pastures should be grazed must be based on relative prices of grain and livestock.
Resumo:
High wheat yields require good N fertilization management. The objective of this study was to evaluate the effects of different N applications at sowing using Entec (N source with nitrification inhibitor) and urea (traditional N source) at covering, on four wheat cultivars. The experiment was conducted in a randomized block design in a factorial scheme, with four replications, at the Experimental Station of the Faculdade de Engenharia de Ilha Solteira - UNESP, on a dystrophic, epi-eutrophic alic Red Latosol with loamy texture, formerly under savannah vegetation. Four N rates (0, 60, 120, and 180 kg ha-1) were tested, applied at sowing in the case of Entec and top-dressed 40 days after plant emergence in the case of urea, and the four wheat cultivars E 21, E 22, E 42, and IAC 370. The yield of the wheat cultivars E 21 and E 42 was highest. Plant height and lodging index of cultivar E 22 were greatest, with consequently lowest grain yield. There was no significant difference between Entec (applied at sowing) and urea (top-dressed) in terms of grain yield and yield components. Nevertheless, urea resulted in a higher N leaf content, and Entec in a larger number of undeveloped spikelets. High nitrogen rates influenced the hectoliter mass negatively, affecting wheat grain quality. Grain yield increased under N rates of up to 82 kg ha-1 N, through Entec applied at sowing or top-dressed urea.
Resumo:
Soil management influences the chemical and physical properties of soil. Chemical conditions have been thoroughly studied, while the role of soil physical conditions regarding crop yield has been neglected. This study aimed to analyze the wheat yield and its relationship with physical properties of an Oxisol under no-tillage (NT). The study was carried out between 2010 and 2011, in Reserva do Iguaçu, State of Paraná, Brazil, on the Campo Bonito farm, after 25 years of NT management. Based on harvest maps of barley (2006), wheat (2007) and maize (2009) of a plot (150 ha), zones with higher and lower yield potential (Z1 and Z2, respectively) were identified. Sampling grids with 16 units (50 x 50 m) and three sampling points per unit were established. The wheat grain yield (GY) and water infiltration capacity (WIC) were evaluated in 2010. Soil samples with disturbed and undisturbed structure were collected from the 0.00-0.10 and 0.10-0.20 m layers. The former were used to determine soil organic carbon (Corg) levels and the latter to determine soil bulk density (BD), total porosity (TP), macroporosity (Mac), and microporosity (Mic). Soil penetration resistance (PR) and water content (SWC) were also evaluated. The wheat GY of the whole plot was close to the regional average and the yield between the zones differed significantly, i.e. 22 % higher in Z1 than in Z2. No significant variation in Mic was observed between zones, but Z1 had higher Corg levels, SWC, TP and Mac and lower BD than Z2 in both soil layers, as well as a lower PR than Z2 in the 0.00-0.10 m layer. Therefore, soil physical conditions were more restrictive in Z2, in agreement with wheat yield and zone yield potential defined a priori, based on the harvest maps. Soil WIC in Z1 was significantly higher (30 %) than in Z2, in agreement with the results of TP and Mac which were also higher in Z1 in both soil layers. The correlation analysis of data of the two layers showed a positive relationship between wheat GY and the soil properties TP, SWC and WIC.
Resumo:
The use of winter legumes in southern Brazil is hindered by the slow growth of these species during establishment exposing soil surface to erosion. Introduction of these species along with spring wheat (Triticum aestivum L.) was studied as a means of increasing ground cover during their initial establishment period, without reducing wheat grain yield. Two experiments were conducted in nearby areas, one in each year. Birdsfoot trefoil (Lotus corniculatus L.), red clover (Trifolium pratense L.) cultivar Quiñequelli, white clover (T. repens L.), and arrowleaf clover (T. vesiculosum Savi) did not reduce cereal yield in either year. Wheat yield was reduced by intercropped red clover cultivar Kenland and by subclover (T. subterraneum L.) in the first year. No grain yield differences due to intercropping with any legume were detected in the second year, when rainfall was below normal. Intercropping with wheat showed to be a practical alternative to enhance ground cover at establishing forage legumes.
Resumo:
Two field experiments were conducted to evaluate the effects of multispecies weed competition on wheat grain yield and to determine their economic threshold on the crop. The experiments were conducted in 2002, on two sites in Iran: at the Agricultural Research Station on Ferdowsi University of Mashhad (E1) and on the fields of Shirvan's Agricultural College (E2). A 15 x 50 m area of a 15 ha wheat field in E1 and a 15 x 50 m area of a 28 ha wheat field in E2 were selected as experimental sites. These areas were managed like other parts of the fields, except for the use of herbicides. At the beginning of the shooting stage, 30 points were randomly selected by dropping a 50 x 50 cm square marker on each site. The weeds present in E1 were: Avena ludoviciana, Chenopodium album, Solanum nigrum, Stellaria holostea, Convolvulus spp., Fumaria spp., Sonchus spp., and Polygonum aviculare. In E2 the weeds were A. ludoviciana, Erysimum sp., P. aviculare, Rapistrum rugosum, C. album, Salsola kali, and Sonchus sp. The data obtained within the sampled squares were submitted to regression equations and weeds densities were calculated in terms of TCL (Total Competitive Load). The regression analysis model indicated that only A. ludoviciana, Convolvulus spp. and C. album, in E1; and A. ludoviciana, S. kali, and R. rugosum, in E2 had a significant effect on the wheat yield reduction. Weed economic thresholds were 5.23 TCL in E1 and 6.16 TCL in E2; which were equivalent to 5 plants m-2 of A. ludoviciana or 12 plants m-2 of Convolvulus spp. or 19 plants m-2 of C. album in E1; and 6 plants m-2 A. ludoviciana, 13 plants m-2 S. kali and 27 plants m-2 R. rugosum in E2. Simulations of economic weed thresholds using several wheat grain prices and weed control costs allowed a better comparison of the experiments, suggesting that a more competitive crop at location E1 than at E2 was the cause of a lower weed competitive ability at the first location.
Resumo:
Emex australis and E. spinosa are significant weed species in wheat and other crops. Information on the extent of competition of the Emex species will be helpful to access yield losses in wheat. Field experiments were conducted to quantify the interference of tested weed densities each as single or mixture of both at 1:1 on their growth and yield, wheat yield components and wheat grain yield losses in two consecutive years. Dry weight of both weed species increased from 3-6 g m-2 with every additional plant of weed, whereas seed number and weight per plant decreased with increasing density of either weed. Both weed species caused considerable decrease in yield components like spike bearing tillers, number of grains per spike, 1000-grain weight of wheat with increasing density population of the weeds. Based on non-linear hyperbolic regression model equation, maximum yield loss at asymptotic weed density was estimated to be 44 and 62% with E. australis, 56 and 70% with E. spinosa and 63 and 72% with mixture of both species at 1:1 during both year of study, respectively. It was concluded that E. spinosa has more competition effects on wheat crop as compared to E. australis.
Resumo:
The objective of this research was to evaluate combinations of liquid media obtained from agro-industrial residues and by-products, with solid media prepared with mixtures of grains and their derivatives, aiming to increase the production of JAB 02 and JAB 45 isolates of Lecanicillium lecanii. Sporulation, conidial viability and process yield were evaluated as well as the production costs using the JAB 45 isolate as a model system were analyzed. The production of JAB 02 was not increased using the biphasic culture. For JAB 45, some combinations provided an increase in yield, especially cheese whey with wheat bran and wheat grain, with lower production costs. Viability was not influenced by the production method, and the combinations showed no differences in the process yield. The biphasic method is suitable for the production of L. lecanii, and proves to be an appropriate technology to use in mass production by biofactories.
Resumo:
Since red alleles (R) of the genes that control grain colour are important for the improvement of preharvest sprouting resistance in wheat and there are three independently inherited loci, on chromosomes 3A, 3B and 3D of hexaploid wheat, it is possible to vary the dosage of dominant alleles in a breeding program. The objective of this work was to evaluate the dosage effect of R genes on preharvest sprouting, in a single seed descent population, named TRL, derived from the cross between Timgalen, white-grained wheat, and RL 4137, red-grained wheat. The study was carried out using sprouting data in ripe ears obtained under artificial conditions in a rainfall simulator over three years. According to the results there is a significant effect on preharvest sprouting provided by colour and a weaker effect of increasing R dosage. However, the significant residual genotypic variation between red lines and all lines (reds and whites) at 0.1% level showed that preharvest sprouting was also controlled by other genes. There are no significant correlations between sprouting and date of ripeness or between ripeness, R dosage and colour intensity.
Resumo:
This article discusses, from the standpoint of cellular biology, the deterministic and indeterministic androgenesis theories. The role of the vacuole and of various types of stresses on deviation of the microspore from normal development and the point where androgenetic competence is acquired are examined. Based on extensive literature review and data on wheat studies from our laboratory, a model for androgenetic capacity of pollen grain is proposed. A two point deterministic model for in vitro androgenesis is our proposal for acquisition of androgenetic potential of the pollen grain: the first switch point would be early meiosis and the second switch point the uninucleate pollen stage, because the elimination of cytoplasmatic sporophytic determinants takes place at those two strategic moments. Any abnormality in this process allowing the maintenance of sporophytic informational molecules results in the absence of establishment of a gametophytic program, allowing the reactivation of the embryogenic process
Resumo:
The aim of this study was to verify the influence of the addition of the enzyme xylanase (four concentrations: 0, 4, 8, and 12 g.100 kg-1 flour) on the characteristics of loaf bread made with white wheat flour or whole grain wheat flour. Breads made from white flour and added with xylanase had higher specific volumes than those of the control sample (no enzyme); however, the specific volume did not differ significantly (p < 0.05) among the breads with different enzyme concentrations. All formulations made from whole grain wheat flour and added with xylanase also had specific volumes significantly higher than those of the control sample, and the highest value was found for the 8 g xylanase.100 kg-1 flour formulation. With respect to moisture content, the formulations with different enzyme concentrations showed small significant differences when compared to the control samples. In general, breads made with the addition of 8 g enzyme.100 kg-1 flour had the lowest firmness values, thus presenting the best technological characteristics.
Resumo:
Genotype (G), environment (E) and their interaction (GEI) play an important role in the final expression of grain yield and quality attributes. A multi-environment trial in wheat was conducted to evaluate the magnitude of G, E and GEI effects on grain yield and quality of wheat genotypes under the three rainfed locations (hereafter environment) of Central Anatolian Plateau of Turkey, during the 2012-2013 cropping season. Grain yield (GY) and analyses of test weight (TW), protein content (PC), wet gluten content (WGC), grain hardness (GH), thousand kernel weight (TKW) and Zeleny sedimentation volume (ZSV) were determined. Allelic variations of high and low molecular weight glutenin subunits (HMW-GS and LMW-GS) and 1B/1R translocation were determined in all genotypes evaluated. Both HMW-Glu-1, 17+18, 5+10 and LMW-Glu-3 b, b, b corresponded to genotypes possessing medium to good quality attributes. Large variability was found among most of the quality attributes evaluated; wider ranges of quality traits were observed in the environments than among the genotypes. The importance of the growing environment effects on grain quality was proved, suggesting that breeders' quality objectives should be adapted to the targeted environments.
Resumo:
As with any variety of rice, red rice characteristics are subject to varietal differences, growing conditions, types of processing, and nutritional and rheological properties. This study determined the nutritional characteristics (centesimal composition and minerals) and paste viscosity properties of raw grains of four red rice genotypes (Tradicional MNAPB0405, MNACE0501 and MNACH0501) and the paste viscosity properties of pre-gelatinized flours obtained at different cooking times (20, 30 and 40 min). The main nutritional properties were correlated with the pasting properties of the pre-gelatinized flours. The samples showed differences in nutritional properties and paste viscosity. MNAPB0405 and MNACE0501 showed higher levels of fiber and fat and provided higher caloric energy than Tradicional and MNACH0501, which, in turn, showed higher levels of amylose. MNACH0501 showed higher peak viscosity (2402 cP), higher breakdown viscosity (696 cP) and a greater tendency to retrogradation (1510 cP), while Tradicional, MNAPB0405 and MNACE0501 had pasting profiles with peak viscosities varying between 855 and 1093 cP, breaking viscosity below 85 cP and retrogradation tendency between 376 and 1206 cP. The factors genotype and cooking time influenced the rheological behavior of pre-gelatinized flours, decreasing their pasting properties. The protein and amylose levels are correlated with the pasting properties and can be used as indicators of these properties in different genotypes of red rice, whether raw or processed into pre-gelatinized flours.
Resumo:
NBPT (N-(n-butyl) thiophosphoric triamide), a urease inhibitor, has been reported as one of the most promising compounds to maximize urea nitrogen use in agricultural systems. The objective of this study was to evaluate the performance of irrigated wheat fertilized with urea or urea + NBPT as single or split application. The experiment was conducted from June to October 2006 in Viçosa, MG, Brazil. The experimental design followed a 2×2 factorial scheme, in which urea or urea + NBPT were combined with two modes of application: full dose at sowing (60kg ha-1) or split (20kg ha-1 at sowing + 40kg ha-1 as topdressing at tillering), in randomized blocks with ten replications. The split application of nitrogen fertilization does not improve the yield wheat under used conditions. The use of urease inhibitor improves the grain yield of wheat crop when urea is applied in topdressing at tillering, but its use does not promote difference when urea is applied in the furrow at planting.
Resumo:
Abstract: There is a need for heat tolerant wheat cultivars adapted to the expansion of cultivation areas in warmer regions due to the high demand of this cereal for human consumption. The objective of this study was to evaluate the effect of high temperatures on grain yield and yield components of wheat and characterize heat tolerant wheat genotypes at different development stages. The genotypes were evaluated in the field with and without heat stress. High temperatures reduced the number of spikelets per spike (21%), number of grains per spike (39%), number of grains per spikelet (23%), 1000-grain weight (27%) and grain yield (79%). Cultivars MGS 1 Aliança, Embrapa 42, IAC 24-Tucuruí and IAC 364-Tucuruí III are the most tolerant to heat stress between the stages double ridge and terminal spikelet; MGS 1 Aliança, BRS 264, IAC 24-Tucuruí, IAC 364-Tucuruí III and VI 98053, between meiosis and anthesis; and BRS 254, IAC-24-Tucuruí, IAC-364-Tucuruí III and VI 98053, between anthesis and physiological maturity. High temperatures reduce grain yield and yield components. The number of grains per spike is the most reduced component under heat stress. The genotypes differed in tolerance to heat stress in different developmental stages.