9 resultados para Weakly Hyperbolic Equations
em Scielo Saúde Pública - SP
Resumo:
Forest regrowth occupies an extensive and increasing area in the Amazon basin, but accurate assessment of the impact of regrowth on carbon and nutrient cycles has been hampered by a paucity of available allometric equations. We develop pooled and species-specific equations for total aboveground biomass for a study site in the eastern Amazon that had been abandoned for 15 years. Field work was conducted using randomized branch sampling, a rapid technique that has seen little use in tropical forests. High consistency of sample paths in randomized branch sampling, as measured by the standard error of individual paths (14%), suggests the method may provide substantial efficiencies when compared to traditional procedures. The best fitting equations in this study used the traditional form Y=a×DBHb, where Y is biomass, DBH is diameter at breast height, and a and b are both species-specific parameters. Species-specific equations of the form Y=a(BA×H), where Y is biomass, BA is tree basal area, H is tree height, and a is a species-specific parameter, fit almost as well. Comparison with previously published equations indicated errors from -33% to +29% would have occurred using off-site relationships. We also present equations for stemwood, twigs, and foliage as biomass components.
Resumo:
AbstractBackground:Aerobic fitness, assessed by measuring VO2max in maximum cardiopulmonary exercise testing (CPX) or by estimating VO2max through the use of equations in exercise testing, is a predictor of mortality. However, the error resulting from this estimate in a given individual can be high, affecting clinical decisions.Objective:To determine the error of estimate of VO2max in cycle ergometry in a population attending clinical exercise testing laboratories, and to propose sex-specific equations to minimize that error.Methods:This study assessed 1715 adults (18 to 91 years, 68% men) undertaking maximum CPX in a lower limbs cycle ergometer (LLCE) with ramp protocol. The percentage error (E%) between measured VO2max and that estimated from the modified ACSM equation (Lang et al. MSSE, 1992) was calculated. Then, estimation equations were developed: 1) for all the population tested (C-GENERAL); and 2) separately by sex (C-MEN and C-WOMEN).Results:Measured VO2max was higher in men than in WOMEN: -29.4 ± 10.5 and 24.2 ± 9.2 mL.(kg.min)-1 (p < 0.01). The equations for estimating VO2max [in mL.(kg.min)-1] were: C-GENERAL = [final workload (W)/body weight (kg)] x 10.483 + 7; C-MEN = [final workload (W)/body weight (kg)] x 10.791 + 7; and C-WOMEN = [final workload (W)/body weight (kg)] x 9.820 + 7. The E% for MEN was: -3.4 ± 13.4% (modified ACSM); 1.2 ± 13.2% (C-GENERAL); and -0.9 ± 13.4% (C-MEN) (p < 0.01). For WOMEN: -14.7 ± 17.4% (modified ACSM); -6.3 ± 16.5% (C-GENERAL); and -1.7 ± 16.2% (C-WOMEN) (p < 0.01).Conclusion:The error of estimate of VO2max by use of sex-specific equations was reduced, but not eliminated, in exercise tests on LLCE.
Resumo:
A dimensional analysis of the classical equations related to the dynamics of vector-borne infections is presented. It is provided a formal notation to complete the expressions for the Ross' Threshold Theorem, the Macdonald's basic reproduction "rate" and sporozoite "rate", Garret-Jones' vectorial capacity and Dietz-Molineaux-Thomas' force of infection. The analysis was intended to provide a formal notation that complete the classical equations proposed by these authors.
Resumo:
Knowledge of intensity-duration-frequency (IDF) relationships of rainfall events is extremely important to determine the dimensions of surface drainage structures and soil erosion control. The purpose of this study was to obtain IDF equations of 13 rain gauge stations in the state of Santa Catarina in Brazil: Chapecó, Urussanga, Campos Novos, Florianópolis, Lages, Caçador, Itajaí, Itá, Ponte Serrada, Porto União, Videira, Laguna and São Joaquim. The daily rainfall data charts of each station were digitized and then the annual maximum rainfall series were determined for durations ranging from 5 to 1440 min. Based on these, with the Gumbel-Chow distribution, the maximum rainfall was estimated for durations ranging from 5 min to 24 h, considering return periods of 2, 5, 10, 20, 25, 50, and 100 years,. Data agreement with the Gumbel-Chow model was verified by the Kolmogorov-Smirnov test, at 5 % significance level. For each rain gauge station, two IDF equations of rainfall events were adjusted, one for durations from 5 to 120 min and the other from 120 to 1440 min. The results show a high variability in maximum intensity of rainfall events among the studied stations. Highest values of coefficients of variation in the annual maximum series of rainfall were observed for durations of over 600 min at the stations of the coastal region of Santa Catarina.
Resumo:
In this work is presented and tested (for 106 adducts, mainly of the zinc group halides) two empirical equations supported in TG data to estimate the value of the metal-ligand bond dissociation enthalpy for adducts: <D> (M-O) = t i / g if t i < 420 K and <D> (M-O) = (t i / g ) - 7,75 . 10-2 . t i if t i > 420 K. In this empirical equations, t i is the thermodynamic temperature of the beginning of the thermal decomposition of the adduct, as determined by thermogravimetry, andg is a constant factor that is function of the metal halide considered and of the number of ligands, but is not dependant of the ligand itself. To half of the tested adducts the difference between experimental and calculated values was less than 5%. To about 80% of the tested adducts, the difference between the experimental (calorimetric) and the calculated (using the proposed equations) values are less than 15%.
Resumo:
ABSTRACT Knowledge of natural water availability, which is characterized by low flows, is essential for planning and management of water resources. One of the most widely used hydrological techniques to determine streamflow is regionalization, but the extrapolation of regionalization equations beyond the limits of sample data is not recommended. This paper proposes a new method for reducing overestimation errors associated with the extrapolation of regionalization equations for low flows. The method is based on the use of a threshold value for the maximum specific low flow discharge estimated at the gauging sites that are used in the regionalization. When a specific low flow, which has been estimated using the regionalization equation, exceeds the threshold value, the low flow can be obtained by multiplying the drainage area by the threshold value. This restriction imposes a physical limit to the low flow, which reduces the error of overestimating flows in regions of extrapolation. A case study was done in the Urucuia river basin, in Brazil, and the results showed the regionalization equation to perform positively in reducing the risk of extrapolation.
Resumo:
The behavior of Petrov-Galerkin formulations for shallow water wave equations is evaluated numerically considering typical one-dimensional propagation problems. The formulations considered here use stabilizing operators to improve classical Galerkin approaches. Their advantages and disadvantages are pointed out according to the intrinsic time scale (free parameter) which has a particular importance in this kind of problem. The influence of the Courant number and the performance of the formulation in dealing with spurious oscillations are adressed.
Resumo:
Findings by our group have shown that the dorsolateral telencephalon of Gymnotus carapo sends efferents to the mesencephalic torus semicircularis dorsalis (TSd) and that presumably this connection is involved in the changes in electric organ discharge (EOD) and in skeletomotor responses observed following microinjections of GABA A antagonist bicuculline into this telencephalic region. Other studies have implicated the TSd or its mammalian homologue, the inferior colliculus, in defensive responses. In the present study, we explore the possible involvement of the TSd and of the GABA-ergic system in the modulation of the electric and skeletomotor displays. For this purpose, different doses of bicuculline (0.98, 0.49, 0.245, and 0.015 mM) and muscimol (15.35 mM) were microinjected (0.1 µL) in the TSd of the awake G. carapo. Microinjection of bicuculline induced dose-dependent interruptions of EOD and increased skeletomotor activity resembling defense displays. The effects of the two highest doses showed maximum values at 5 min (4.3 ± 2.7 and 3.8 ± 2.0 Hz, P < 0.05) and persisted until 10 min (11 ± 5.7 and 8.7 ± 5.2 Hz, P < 0.05). Microinjections of muscimol were ineffective. During the interruptions of EOD, the novelty response (increased frequency in response to sensory novelties) induced by an electric stimulus delivered by a pair of electrodes placed in the water of the experimental cuvette was reduced or abolished. These data suggest that the GABA-ergic mechanisms of the TSd inhibit the neural substrate of the defense reaction at this midbrain level.
Resumo:
The aims of this study were to determine whether standard base excess (SBE) is a useful diagnostic tool for metabolic acidosis, whether metabolic acidosis is clinically relevant in daily evaluation of critically ill patients, and to identify the most robust acid-base determinants of SBE. Thirty-one critically ill patients were enrolled. Arterial blood samples were drawn at admission and 24 h later. SBE, as calculated by Van Slyke's (SBE VS) or Wooten's (SBE W) equations, accurately diagnosed metabolic acidosis (AUC = 0.867, 95%CI = 0.690-1.043 and AUC = 0.817, 95%CI = 0.634-0.999, respectively). SBE VS was weakly correlated with total SOFA (r = -0.454, P < 0.001) and was similar to SBE W (r = -0.482, P < 0.001). All acid-base variables were categorized as SBE VS <-2 mEq/L or SBE VS <-5 mEq/L. SBE VS <-2 mEq/L was better able to identify strong ion gap acidosis than SBE VS <-5 mEq/L; there were no significant differences regarding other variables. To demonstrate unmeasured anions, anion gap (AG) corrected for albumin (AG A) was superior to AG corrected for albumin and phosphate (AG A+P) when strong ion gap was used as the standard method. Mathematical modeling showed that albumin level, apparent strong ion difference, AG A, and lactate concentration explained SBE VS variations with an R² = 0.954. SBE VS with a cut-off value of <-2 mEq/L was the best tool to diagnose clinically relevant metabolic acidosis. To analyze the components of SBE VS shifts at the bedside, AG A, apparent strong ion difference, albumin level, and lactate concentration are easily measurable variables that best represent the partitioning of acid-base derangements.