31 resultados para WATER-VAPOR BARRIER
em Scielo Saúde Pública - SP
Resumo:
Mimic biological structures such as the cell wall of plant tissues may be an alternative to obtain biodegradable films with improved mechanical and water vapor barrier properties. This study aims to evaluate the mechanical properties and water vapor permeability (WVP) of films produced by using the solvent-casting technique from blended methylcellulose, glucomannan, pectin and gelatin. First, films from polysaccharides at pH 4 were produced. The film with the best mechanical performance (tensile strength = 72.63 MPa; elongation = 9.85%) was obtained from methylcellulose-glucomannan-pectin at ratio 1:4:1, respectively. Then, gelatin was added to this polysaccharide blend and the pH was adjusted to 4, 5 and 6. Results showed significant improvement in WVP when films were made at pH 5 and at polysaccharides/gelatin ratio of 90/10 and 10/90, reaching 0.094 and 0.118 g.mm/h.m².kPa as values, respectively. Films with the best mechanical properties were obtained from the blend of polysaccharides, whereas WVP was improved from the blend of polysaccharides and gelatin at pH 5.
Resumo:
Abstract Composite films of chitosan, fish gelatin and microbial transglutaminase (MTgase) were developed. Films were produced by the casting method and dried at room temperature for 30 h, conditioned for 7 days at 30 °C at a relative humidity (RH) from 11 to 90%, and characterized. Chitosan:fish gelatin films in different proportions (100:0, 75:25, 50:50) with MTgase, were subjected to tensile properties and water vapor transmission (WVT) testing. The results showed that tensile strength decreased with an increase in RH and with an increase in gelatin content. Percent of elongation also increased with increasing RH and gelatin concentration. Water vapor transmission showed an increase proportional to an increase in RH with the presence of gelatin being unfavorable for reducing WVT. Results in this work allowed studying the effect of relative humidity on tensile and water vapor properties of chitosan and fish gelatin films.
Resumo:
Nanocomposite materials have been incorporated into biopolymers, (e.g. hydroxypropyl methylcellulose), to improve their physical and chemical properties and enable them to be applied in food packaging, especially for their biodegradable and renewable properties. With this addition, fruit puree has been incorporated into the films to confer nutritional properties besides color and flavor. Chitosan is of interest in the packaging field since it is a biodegradable, bioabsorbable, antimicrobial agent. Furthermore, chitosan nanoparticles have been widely explored for their interesting properties and potential applications in food packaging. This work was divided into two stages: (1) chitosan nanoparticle synthesis; (2) addition of nanoparticles into HPMC and papaya puree films. Addition of chitosan nanoparticles to HPMC and papaya puree films improved film properties: mechanical, thermal and water vapor barrier. We have developed a novel nanomaterial with great potential for application in packaging to prolong the shelf life of food.
Resumo:
Natural or modified chondroitin sulfate was incorporated in to polymethacrylate to obtain isolated films. The addition of polysaccharide to synthetic polymers occurred at different rates. Isolated films were micro and macroscopically characterized and swelling index and water vapor transmission were determined. Results indicated changed transparency and flexibility, coupled to their dependence on increase in polysaccharide concentration. A similar occurrence was reported in the permeability to water vapor and swelling degree. Films composed of modified chondroitin sulfate, 90:10 concentration, showed hydration levels, permeability and morphological properties which allow them to be applied as excipients in the development of new drug delivery systems.
Resumo:
Alteration in hydrophilicity feature of chitosan films by hexamethyldisilazane (HMDS) cold-plasma treatment is evaluated. All treated films were colorless and transparent with no apparent textural changes. The effect on surfaces was characterized through contact angle measurements, degree of swelling and water vapor permeation. A significant reduction in all of the hydrophilicity parameters was observed. It is assumed that the HMDS treatment forms nonpolar silicone type structures. The goal is to investigate the formation of a stable hydrophobic barrier in order to increase the chitosan films usefulness in packaging applications.
Resumo:
Most compounds reinforcements have been used to improve thermals, mechanical and barrier properties of biopolymers films, whose performance is usually poor when compared to those of synthetic polymers. Biodegradables films have been developed by adding mango and acerola pulps in different concentrations (0-17,1% w/w) as antioxidants active compounds to cassava starch based biodegradable films. The effect of pulps was studied in terms of tensile properties, water vapor permeability, DSC, among other analysis of the films. The study demonstrated that the properties of cassava starch biodegradable films can be significantly altered through of incorporation mango and acerola pulps.
Resumo:
The objective of this work was to manufacture biodegradable films based on cassava starch, polyvinyl alcohol (PVA) and sodium montmorillonite (Na-MMT), using glycerol as a plasticizer. These films were characterized according to their microstructure, optical, mechanical, and barrier properties. The combination of starch-PVA-MMT resulted in films with a more homogeneous surface than starch films. The introduction of PVA into the starch matrix led to the formation of films with lower water vapor permeability (WVP), higher tensile strength and greater elongation. MMT was exfoliated in the films, resulting in greater stability for different relative humidities, lower WVP, higher resistance and lower flexibility.
Resumo:
This work aims to (1) produce and characterize the flour obtained from two varieties of canihua, cupi and illpa-inia, and (2) evaluate the ability of these flours to form biofilms. The flours produced contain proteins, starches, lipids, organic substances containing phenol groups, and high percentages of unsaturated fatty acids. Films produced from the illpa variety presented lower water vapor permeability and larger Young’s modulus values than the films formed from the cupi variety. Both films were yellowish and displayed a high light blocking ability (as compared with polyethylene films), which can be attributed to the presence of phenolic compounds. Furthermore, they showed lesser solubility and water permeability than other polysaccharide films, which may be the result of the higher protein (12%–13.8%) and lipid (11%) contents in canihua flours, as well as the formation of a larger number of S–S bonds. On the other hand, these films presented a single vitreous transition temperature at low temperatures (< 0 °C), crystallization of the A and Vh types, and an additional diffraction peak at 2 = 7.5º, ascribed to the presence of essential fatty acids in canihua flour. Canihua flour can form films with adequate properties and shows promise for potential applications in food packaging, because it acts as a good barrier to incident ultraviolet light.
Resumo:
T84 is an established cell line expressing an enterocyte phenotype whose permeability properties have been widely explored. Osmotic permeability (P OSM), hydraulic permeability (P HYDR) and transport-associated net water fluxes (J W-transp), as well as short-circuit current (I SC), transepithelial resistance (R T), and potential difference (deltaV T) were measured in T84 monolayers with the following results: P OSM 1.3 ± 0.1 cm.s-1 x 10-3; P HYDR 0.27 ± 0.02 cm.s-1; R T 2426 ± 109 omega.cm², and deltaV T 1.31 ± 0.38 mV. The effect of 50 µM 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (DCEBIO), a "net Cl- secretory agent", on T84 cells was also studied. We confirm the reported important increase in I SC induced by DCEBIO which was associated here with a modest secretory deltaJ W-transp. The present results were compared with those reported using the same experimental approach applied to established cell lines originating from intestinal and renal epithelial cells (Caco-2, LLC-PK1 and RCCD-1). No clear association between P HYDR and R T could be demonstrated and high P HYDR values were observed in an electrically tight epithelium, supporting the view that a "water leaky" barrier is not necessarily an "electrically leaky" one. Furthermore, the modest secretory deltaJ W-transp was not consistent with previous results obtained with RCCD-1 cells stimulated with vasopressin (absorptive fluxes) or with T84 cells secreting water under the action of Escherichia coli heat stable enterotoxin. We conclude that, while the presence of aquaporins is necessary to dissipate an external osmotic gradient, coupling between water and ion transport cannot be explained by a simple and common underlying mechanism.
Resumo:
Edible films based on gluten from four types of Brazilian wheat gluten (2 "semi-hard" and 2 "soft") were prepared and mechanical and barrier properties were compared with those of wheat gluten films with vital gluten. Water vapor, oxygen permeability, tensile strength and percent elongation at break, solubility in water and surface morphology were measured. The films from "semi-hard" wheat flours showed similar water vapor permeability and solubility in water to films from vital gluten and better tensile strength than the films from "soft" and vital gluten. The films from vital gluten had higher elongation at break and oxygen permeability and also lower solubility in water than the films from the Brazilian wheat "soft" flours. In spite of the vital gluten showed greater mechanical resistance, desirable for the bakery products, for the purpose of developing gluten films Brazilian "semi-hard" wheat flours can be used instead of vital gluten, since they showed similar barrier and mechanical properties.
Resumo:
The aim of this study was to investigate the use of protein-phenolic based coating made from fermented rice bran on cherry tomatoes (Lycopersicum esculentum). Tests were performed with glycerol 3% (v/v), glycerol with protein-phenolic rice bran extract (5%), glycerol with protein-phenolic extract after 96 hours of fermentation (5%), and a control (without coating). The coated cherry tomatoes were kept at room temperature for 28 days. Mass loss, pH and acidity, total soluble solids, and carotenoids were determined every 96 hours. The coating made from the biomass extract reduced the carotenoid and acidity levels in the fruits studied by 17 and 21.1%, respectively, compared to the control. The coating proved an efficient barrier to water vapor with mass loss of 57% less than the control suggesting that it can be used as an alternative for vegetable tissue conservation.
Resumo:
OBJECTIVE: To assess the health risk of exposure to benzene for a community affected by a fuel leak. METHODS: Data regarding the fuel leak accident with, which occurred in the Brasilia, Federal District, were obtained from the Fuel Distributor reports provided to the environmental authority. Information about the affected population (22 individuals) was obtained from focal groups of eight individuals. Length of exposure and water benzene concentration were estimated through a groundwater flow model associated with a benzene propagation model. The risk assessment was conducted according to the Agency for Toxic Substances and Disease Registry methodology. RESULTS: A high risk perception related to the health consequences of the accident was evident in the affected community (22 individuals), probably due to the lack of assistance and a poor risk communication from government authorities and the polluting agent. The community had been exposed to unsafe levels of benzene (> 5 µg/L) since December 2001, five months before they reported the leak. The mean benzene level in drinking water (72.2 µg/L) was higher than that obtained by the Fuel Distributer using the Risk Based Corrective Action methodology (17.2 µg/L).The estimated benzene intake from the consumption of water and food reached a maximum of 0.0091 µg/kg bw/day (5 x 10-7 cancer risk per 106 individuals). The level of benzene in water vapor while showering reached 7.5 µg/m3 for children (1 per 104 cancer risk). Total cancer risk ranged from 110 to 200 per 106 individuals. CONCLUSIONS: The population affected by the fuel leak was exposed to benzene levels that might have represented a health risk. Local government authorities need to develop better strategies to respond rapidly to these types of accidents to protect the health of the affected population and the environment.
Resumo:
The use of fluidized bed combustors to burn coal is largely studied to permit the addition of limestone to capture SO2. The particle size for coal and limestone is an important parameter in this process. Thermogravimetry (TG) is used to elucidate the combustion and sulfation processes, but the experimental parameters must be evaluated to be representative in fluidized bed combustors. In the present study the effect of particle size is analyzed in the calcination of limestones and the combustion of coal through the thermogravimetric curve for limestone and derivative thermogravimetric curve for coal. Small peaks representing mass losses between 400 and 500 ºC are observed due to the jumping of particles out of the crucible. This effect, recognized as decrepitation is observed for mid-sized particles provoked by the release of water vapor trapped within their lattice.
Use of thin films obtained by plasma polymerization for grain protection and germination enhancement
Resumo:
In this work, preliminary results of the use of hydrophobic thin films obtained by plasma deposition to protect grains and seeds are presented: grains coated by the films did not present biological degradation when stored in a saturated water vapor environment, but had their germination accelerated in the presence of water. A model that explains the difference of behavior of the films when exposed to water in vapor form or in liquid form, based on the formation of microchannels within the film that lead to water uptake in seeds, is presented. The model was successfully tested using quartz crystal measurements, which showed that the microchannels within the films can favor the adsorption and permeation of water when the films are immersed in water.
Resumo:
Pyrohydrolysis is proposed for fossil fuels sample preparation for further fluorine and chlorine determination. Samples were heated during 10 min at temperatures up to 1000 °C. Water vapor was passed through the reactor and the volatile products were condensed and collected in NH4OH solution. Fluoride was determined by potentiometry using an ion selective electrode (ISE) and Cl by ICP OES and DRC-ICP-MS. The results are in good agreement with certified values and the precision is better than 10% (n = 4). Sample preparation by means of pyrohydrolysis is relatively simple, whereas chlorine and fluorine can be determined at low concentrations.